Classification of cendrawasih birds using convolutional neural network (CNN) keras recognition

Warnia Nengsih, Ardiyanto Ardiyanto, A. Lestari
{"title":"Classification of cendrawasih birds using convolutional neural network (CNN) keras recognition","authors":"Warnia Nengsih, Ardiyanto Ardiyanto, A. Lestari","doi":"10.33096/ilkom.v13i3.865.259-265","DOIUrl":null,"url":null,"abstract":"Classification is part of predictive modeling and supervised learning. This method is used to determine the data class based on the previous value. In solving certain cases, there are various classification methods with varying degrees of accuracy. Convolutional Neural Network (CNN) is part of the Multilayer Perceptron (MLP) for processing two-dimensional data. CNN is also part of the Deep Neural Network and is applied to image objects. Some sources state that the classification process using images is not appropriate to be implemented in MLP. This will result in the accuracy of the method in handling certain cases. This study uses cendrawasih bird as object in the classification process to determine the accuracy of the keras recognition method. From the results of this study, a training model was conducted using 10 epochs with an accuracy and loss value of 0.0850 and 2.5658 respectively. These results indicate that MLP can successfully complete the classification process using images. These results indicate that MLP can successfully complete the classification process using images .","PeriodicalId":33690,"journal":{"name":"Ilkom Jurnal Ilmiah","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ilkom Jurnal Ilmiah","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33096/ilkom.v13i3.865.259-265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Classification is part of predictive modeling and supervised learning. This method is used to determine the data class based on the previous value. In solving certain cases, there are various classification methods with varying degrees of accuracy. Convolutional Neural Network (CNN) is part of the Multilayer Perceptron (MLP) for processing two-dimensional data. CNN is also part of the Deep Neural Network and is applied to image objects. Some sources state that the classification process using images is not appropriate to be implemented in MLP. This will result in the accuracy of the method in handling certain cases. This study uses cendrawasih bird as object in the classification process to determine the accuracy of the keras recognition method. From the results of this study, a training model was conducted using 10 epochs with an accuracy and loss value of 0.0850 and 2.5658 respectively. These results indicate that MLP can successfully complete the classification process using images. These results indicate that MLP can successfully complete the classification process using images .
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用卷积神经网络(CNN)keras识别对濒危鸟类进行分类
分类是预测建模和监督学习的一部分。此方法用于根据以前的值确定数据类。在解决某些情况时,有各种准确度不同的分类方法。卷积神经网络(CNN)是多层感知器(MLP)的一部分,用于处理二维数据。CNN也是深度神经网络的一部分,应用于图像对象。一些来源指出,使用图像的分类过程不适合在MLP中实现。这将导致该方法在处理某些情况时的准确性。本研究在分类过程中使用cendrawash鸟作为对象来确定keras识别方法的准确性。根据这项研究的结果,使用10个时期进行了训练模型,精度和损失值分别为0.0850和2.5658。这些结果表明,MLP可以成功地完成使用图像的分类过程。这些结果表明,MLP可以成功地完成使用图像的分类过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
4 weeks
期刊最新文献
K-Nearest Neighbors Analysis for Public Sentiment towards Implementation of Booster Vaccines in Indonesia Feature Space Augmentation for Negation Handling on Sentiment Analysis Diabetes Mellitus Early Detection Simulation using The K-Nearest Neighbors Algorithm with Cloud-Based Runtime (COLAB) Comparative Study of Herbal Leaves Classification using Hybrid of GLCM-SVM and GLCM-CNN Decision Tree C4.5 Performance Improvement using Synthetic Minority Oversampling Technique (SMOTE) and K-Nearest Neighbor for Debtor Eligibility Evaluation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1