Preparation of a water-absorbent mesoporous material and film to simulate the infrared spectrum of plants

IF 2.9 4区 化学 Q2 POLYMER SCIENCE Polymer International Pub Date : 2023-09-02 DOI:10.1002/pi.6571
Siqi Zhang, Jianjun Zhang, Yue Zhang, Sude Ma
{"title":"Preparation of a water-absorbent mesoporous material and film to simulate the infrared spectrum of plants","authors":"Siqi Zhang,&nbsp;Jianjun Zhang,&nbsp;Yue Zhang,&nbsp;Sude Ma","doi":"10.1002/pi.6571","DOIUrl":null,"url":null,"abstract":"<p>Hyperspectral imaging poses great challenges to traditional camouflage materials, primarily because there is a huge difference between the reflectance spectra of camouflage materials and natural plants in the 1400–2000 nm band. The difficulty of simulating the natural plant spectrum lies in reproducing the absorption peak of water by increasing the water content in a camouflage material. Herein, a mesoporous (MS) material is used to simulate the plant spectrum because such material can absorb and retain a large amount of water. MS was prepared via a two-step method using tetraethyl orthosilicate and tetrabutyl titanate. The characteristics of the as-prepared MS were examined via X-ray diffraction, transmission electron microscopy, ultraviolet–visible diffusion reflectance spectroscopy and nitrogen adsorption–desorption isotherms. In addition, a film was prepared using the fully absorbent mesoporous material, and the water content was determined via near-infrared spectroscopy and thermogravimetric analysis. The bonding between the mesoporous material and resin was examined via field emission gun scanning electron microscopy. The mechanical properties of the film were measured by a pendulum hardness tester and a cylindrical bending tester. The results indicate that low-temperature synthesis followed by high-temperature hydrothermal treatment is conducive to expanding the mesopore aperture, reaching a maximum of 23 nm. Moreover, the regular structure of the as-prepared titanium-containing mesoporous material is maintained under high hydrothermal temperature. The mesoporous film exhibits a good water absorption capacity of up to 80% by mass and can effectively simulate the spectrum of plants. The mechanical properties of the film are good, and the hardness of the film is related to the content of mesoporous powder. © 2023 Society of Industrial Chemistry.</p>","PeriodicalId":20404,"journal":{"name":"Polymer International","volume":"73 1","pages":"61-67"},"PeriodicalIF":2.9000,"publicationDate":"2023-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer International","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pi.6571","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Hyperspectral imaging poses great challenges to traditional camouflage materials, primarily because there is a huge difference between the reflectance spectra of camouflage materials and natural plants in the 1400–2000 nm band. The difficulty of simulating the natural plant spectrum lies in reproducing the absorption peak of water by increasing the water content in a camouflage material. Herein, a mesoporous (MS) material is used to simulate the plant spectrum because such material can absorb and retain a large amount of water. MS was prepared via a two-step method using tetraethyl orthosilicate and tetrabutyl titanate. The characteristics of the as-prepared MS were examined via X-ray diffraction, transmission electron microscopy, ultraviolet–visible diffusion reflectance spectroscopy and nitrogen adsorption–desorption isotherms. In addition, a film was prepared using the fully absorbent mesoporous material, and the water content was determined via near-infrared spectroscopy and thermogravimetric analysis. The bonding between the mesoporous material and resin was examined via field emission gun scanning electron microscopy. The mechanical properties of the film were measured by a pendulum hardness tester and a cylindrical bending tester. The results indicate that low-temperature synthesis followed by high-temperature hydrothermal treatment is conducive to expanding the mesopore aperture, reaching a maximum of 23 nm. Moreover, the regular structure of the as-prepared titanium-containing mesoporous material is maintained under high hydrothermal temperature. The mesoporous film exhibits a good water absorption capacity of up to 80% by mass and can effectively simulate the spectrum of plants. The mechanical properties of the film are good, and the hardness of the film is related to the content of mesoporous powder. © 2023 Society of Industrial Chemistry.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
模拟植物红外光谱的吸水性介孔材料和膜的制备
高光谱成像对传统伪装材料提出了巨大挑战,主要是因为伪装材料与天然植物在1400 ~ 2000 nm波段的反射光谱存在巨大差异。模拟天然植物光谱的难点在于通过增加伪装材料中的含水量来再现水的吸收峰。本文采用介孔(MS)材料来模拟植物光谱,因为它可以吸收和保留大量的水分和水分。以正硅酸四乙酯(TEOS)和钛酸四丁酯(TBT)为原料,采用两步法制备了质谱。通过X射线衍射(XRD)、透射电子显微镜(TEM)、紫外-可见扩散反射光谱(UV - vis - DRS)和氮吸附-脱附等温线对制备的介孔材料进行了表征。此外,利用全吸水性介孔材料制备了薄膜,并通过近红外光谱(NIRS)和热重分析(TG)测试了其含水量。通过场发射枪扫描电镜(FEG - SEM)研究了介孔材料与树脂之间的结合。采用摆式硬度试验机和圆柱弯曲试验机对薄膜的力学性能进行了测试。结果表明,低温合成后再进行高温水热处理有利于扩大介孔孔径,孔径最大可达23 nm。此外,制备的含钛介孔材料在高温下仍能保持其规则结构。该介孔膜具有良好的吸水率,吸水率可达80%,并能有效地模拟植物光谱。膜的力学性能良好,膜的硬度与介孔粉的含量有关。这篇文章受版权保护。版权所有。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Polymer International
Polymer International 化学-高分子科学
CiteScore
7.10
自引率
3.10%
发文量
135
审稿时长
4.3 months
期刊介绍: Polymer International (PI) publishes the most significant advances in macromolecular science and technology. PI especially welcomes research papers that address applications that fall within the broad headings Energy and Electronics, Biomedical Studies, and Water, Environment and Sustainability. The Journal’s editors have identified these as the major challenges facing polymer scientists worldwide. The Journal also publishes invited Review, Mini-review and Perspective papers that address these challenges and others that may be of growing or future relevance to polymer scientists and engineers.
期刊最新文献
Issue Information Titanium oxide hydrates as versatile polymer crosslinkers and molecular-hybrid formers Issue Information Natural polymers for emerging technological applications: cellulose, lignin, shellac and silk Investigate Performance of ATGF nanocomposite based on guar gum polymer for adsorption of Congo Red dye and alpha lipoic acid drug from wastewater: study kinetics and simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1