A Semiparametric Tilt Optimality Model

IF 0.9 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Stats Pub Date : 2022-12-22 DOI:10.3390/stats6010001
Chathurangi H. Pathiravasan, B. Bhattacharya
{"title":"A Semiparametric Tilt Optimality Model","authors":"Chathurangi H. Pathiravasan, B. Bhattacharya","doi":"10.3390/stats6010001","DOIUrl":null,"url":null,"abstract":"Practitioners often face the situation of comparing any set of k distributions, which may follow neither normality nor equality of variances. We propose a semiparametric model to compare those distributions using an exponential tilt method. This extends the classical analysis of variance models when all distributions are unknown by relaxing its assumptions. The proposed model is optimal when one of the distributions is known. Large-sample estimates of the model parameters are derived, and the hypotheses for the equality of the distributions are tested for one-at-a-time and simultaneous comparison cases. Real data examples from NASA meteorology experiments and social credit card limits are analyzed to illustrate our approach. The proposed approach is shown to be preferable in a simulated power comparison with existing parametric and nonparametric methods.","PeriodicalId":93142,"journal":{"name":"Stats","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stats","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/stats6010001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Practitioners often face the situation of comparing any set of k distributions, which may follow neither normality nor equality of variances. We propose a semiparametric model to compare those distributions using an exponential tilt method. This extends the classical analysis of variance models when all distributions are unknown by relaxing its assumptions. The proposed model is optimal when one of the distributions is known. Large-sample estimates of the model parameters are derived, and the hypotheses for the equality of the distributions are tested for one-at-a-time and simultaneous comparison cases. Real data examples from NASA meteorology experiments and social credit card limits are analyzed to illustrate our approach. The proposed approach is shown to be preferable in a simulated power comparison with existing parametric and nonparametric methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一个半参数倾斜最优模型
从业者经常面临比较任何一组k分布的情况,这些分布既不遵循正态性,也不遵循方差相等。我们提出了一个半参数模型来使用指数倾斜方法比较这些分布。当所有分布都未知时,这通过放松其假设扩展了方差模型的经典分析。当其中一个分布已知时,所提出的模型是最优的。导出了模型参数的大样本估计,并在一次一个和同时比较的情况下检验了分布相等的假设。分析了美国国家航空航天局气象实验和社会信用卡限额的真实数据示例,以说明我们的方法。与现有的参数和非参数方法相比,所提出的方法在模拟功率比较中是优选的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
审稿时长
7 weeks
期刊最新文献
Bidirectional f-Divergence-Based Deep Generative Method for Imputing Missing Values in Time-Series Data. Exact Inference for Random Effects Meta-Analyses for Small, Sparse Data. Investigating Risk Factors for Racial Disparity in E-Cigarette Use with PATH Study. Doubly Robust Estimation and Semiparametric Efficiency in Generalized Partially Linear Models with Missing Outcomes. Integrating Proteomic Analysis and Machine Learning to Predict Prostate Cancer Aggressiveness.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1