Robust clustering based on finite mixture of multivariate fragmental distributions

IF 1.2 4区 数学 Q2 STATISTICS & PROBABILITY Statistical Modelling Pub Date : 2023-06-01 DOI:10.1177/1471082X211048660
M. Maleki, G. McLachlan, Sharon X. Lee
{"title":"Robust clustering based on finite mixture of multivariate fragmental distributions","authors":"M. Maleki, G. McLachlan, Sharon X. Lee","doi":"10.1177/1471082X211048660","DOIUrl":null,"url":null,"abstract":"A flexible class of multivariate distributions called scale mixtures of fragmental normal (SMFN) distributions, is introduced. Its extension to the case of a finite mixture of SMFN (FM-SMFN) distributions is also proposed. The SMFN family of distributions is convenient and effective for modelling data with skewness, discrepant observations and population heterogeneity. It also possesses some other desirable properties, including an analytically tractable density and ease of computation for simulation and estimation of parameters. A stochastic representation of the SMFN distribution is given and then a hierarchical representation is described, the latter aids in parameter estimation, derivation of statistical properties and simulations. Maximum likelihood estimation of the FM-SMFN distribution via the expectation–maximization (EM) algorithm is outlined before the clustering performance of the proposed mixture model is illustrated using simulated and real datasets. In particular, the ability of FM-SMFN distributions to model data generated from various well-known families is demonstrated.","PeriodicalId":49476,"journal":{"name":"Statistical Modelling","volume":"23 1","pages":"247 - 272"},"PeriodicalIF":1.2000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Modelling","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1177/1471082X211048660","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 3

Abstract

A flexible class of multivariate distributions called scale mixtures of fragmental normal (SMFN) distributions, is introduced. Its extension to the case of a finite mixture of SMFN (FM-SMFN) distributions is also proposed. The SMFN family of distributions is convenient and effective for modelling data with skewness, discrepant observations and population heterogeneity. It also possesses some other desirable properties, including an analytically tractable density and ease of computation for simulation and estimation of parameters. A stochastic representation of the SMFN distribution is given and then a hierarchical representation is described, the latter aids in parameter estimation, derivation of statistical properties and simulations. Maximum likelihood estimation of the FM-SMFN distribution via the expectation–maximization (EM) algorithm is outlined before the clustering performance of the proposed mixture model is illustrated using simulated and real datasets. In particular, the ability of FM-SMFN distributions to model data generated from various well-known families is demonstrated.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多元碎片分布有限混合的稳健聚类
介绍了一类灵活的多元分布,即碎片正态分布的尺度混合分布。并将其推广到有限混合SMFN分布(FM-SMFN)的情况。SMFN分布族对于具有偏度、差异观测值和总体异质性的数据建模方便有效。它还具有其他一些令人满意的特性,包括可解析处理的密度和易于模拟和估计参数的计算。给出了SMFN分布的随机表示,然后描述了分层表示,后者有助于参数估计,统计性质的推导和模拟。通过期望最大化(EM)算法对FM-SMFN分布的最大似然估计进行了概述,然后用模拟和实际数据集说明了所提出的混合模型的聚类性能。特别是,FM-SMFN分布对来自各种知名家族的数据进行建模的能力得到了证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Statistical Modelling
Statistical Modelling 数学-统计学与概率论
CiteScore
2.20
自引率
0.00%
发文量
16
审稿时长
>12 weeks
期刊介绍: The primary aim of the journal is to publish original and high-quality articles that recognize statistical modelling as the general framework for the application of statistical ideas. Submissions must reflect important developments, extensions, and applications in statistical modelling. The journal also encourages submissions that describe scientifically interesting, complex or novel statistical modelling aspects from a wide diversity of disciplines, and submissions that embrace the diversity of applied statistical modelling.
期刊最新文献
A statistical modelling approach to feedforward neural network model selection The Skellam distribution revisited: Estimating the unobserved incoming and outgoing ICU COVID-19 patients on a regional level in Germany A novel mixture model for characterizing human aiming performance data Fast, effective, and coherent time series modelling using the sparsity-ranked lasso Taking advantage of sampling designs in spatial small-area survey studies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1