Determination of the duration of forced cooling of castings in containers on foundry rotary-conveyor lines

P. Kaliuzhnyi, O. Shinsky
{"title":"Determination of the duration of forced cooling of castings in containers on foundry rotary-conveyor lines","authors":"P. Kaliuzhnyi, O. Shinsky","doi":"10.15407/plit2023.01.035","DOIUrl":null,"url":null,"abstract":"The article is devoted to the developing of a methodology for determining the duration of the technological cycle of cooling castings during the aerodynamic movement of dispersed refractory in containers of foundry rotary-conveyor lines. The use of rotary-conveyor lines is an effective solution for increasing the productivity of foundry technologies. To comply with the principles of construction of rotary-conveyor lines, the cooling time of castings in a mold, as one of the longest technological processes, must be minimized. This can be achieved by forced cooling of castings using the aerodynamic movement of dispersed refractory in the foundry container. As an example of the implementation of this method on a foundry rotary-conveyor line, the sequence of technological operations on the cooling module is described. Based on thermodynamic calculations, an expression for determining the time of forced cooling was obtained, which depends on the thermophysical and geometric characteristics of the casting, the heat transfer coefficient and the temperature pressure on the surface of the casting. An example of calculating the time of forced cooling of steel castings is given. It is shown that when applying the aerodynamic movement of dispersed refractory in the container, the cooling time of the castings to the knocking temperature can be reduced by 6.6-7.5 times compared to the conventional cooling in the sand mold. By changing the airflow rate that liquefies the refractory, the forced cooling operation can be flexibly controlled for different castings that are produced on foundry rotary-conveyor lines. Keywords: casting, cooling time, dispersed refractory, temperature, rotary-conveyor line.","PeriodicalId":52779,"journal":{"name":"Protsessy lit''ia","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protsessy lit''ia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/plit2023.01.035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The article is devoted to the developing of a methodology for determining the duration of the technological cycle of cooling castings during the aerodynamic movement of dispersed refractory in containers of foundry rotary-conveyor lines. The use of rotary-conveyor lines is an effective solution for increasing the productivity of foundry technologies. To comply with the principles of construction of rotary-conveyor lines, the cooling time of castings in a mold, as one of the longest technological processes, must be minimized. This can be achieved by forced cooling of castings using the aerodynamic movement of dispersed refractory in the foundry container. As an example of the implementation of this method on a foundry rotary-conveyor line, the sequence of technological operations on the cooling module is described. Based on thermodynamic calculations, an expression for determining the time of forced cooling was obtained, which depends on the thermophysical and geometric characteristics of the casting, the heat transfer coefficient and the temperature pressure on the surface of the casting. An example of calculating the time of forced cooling of steel castings is given. It is shown that when applying the aerodynamic movement of dispersed refractory in the container, the cooling time of the castings to the knocking temperature can be reduced by 6.6-7.5 times compared to the conventional cooling in the sand mold. By changing the airflow rate that liquefies the refractory, the forced cooling operation can be flexibly controlled for different castings that are produced on foundry rotary-conveyor lines. Keywords: casting, cooling time, dispersed refractory, temperature, rotary-conveyor line.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
铸造旋转输送线上容器中铸件强制冷却持续时间的测定
本文致力于开发一种方法,用于确定在铸造旋转输送线容器中分散耐火材料的空气动力学运动过程中冷却铸件的技术周期。采用旋转输送线是提高铸造工艺生产效率的有效解决方案。为了符合旋转输送线的施工原则,铸件在模具中的冷却时间作为最长的工艺过程之一,必须最小化。这可以通过使用铸造容器中分散耐火材料的空气动力学运动来强制冷却铸件来实现。以某铸造厂旋转输送生产线为例,介绍了冷却模块的工艺操作顺序。基于热力学计算,得到了强制冷却时间的表达式,该表达式取决于铸件的热物理和几何特性、传热系数和铸件表面的温度压力。给出了钢铸件强制冷却时间的计算实例。结果表明,利用分散耐火材料在容器内的气动运动,铸件冷却至爆震温度的时间比常规砂型冷却可缩短6.6 ~ 7.5倍。通过改变液化耐火材料的气流速率,可以灵活地控制铸造旋转输送生产线上生产的不同铸件的强制冷却操作。关键词:铸造,冷却时间,分散耐火材料,温度,旋转输送线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
10
审稿时长
8 weeks
期刊最新文献
PHYSICO-CHEMICAL METHODS OF INCREASING THE CRACK RESISTANCE OF ALLOY AM4.5Cd (VAL10). NOTICE 1: EXPERIENCE OF USING AN RING SAMPLE THE USE OF CERAMIC FILTERS IN THE SMELTING OF WORKPIECES FROM HEAT-RESISTANT ALLOYS STIRRING OF METAL MELTS FOR IMPROVING THE EFFICIENCY OF THE “LADLE – FURNACE” UNITS Message 2. NEW METHOD FOR ELECTROMAGNETIC STIRRING OF METALLIC MELT IN “LADLE – FURNACE” UNIT TECHNOLOGICAL FEATURES OF MANUFACTURING ALLOY AK7h STRENGTHENED WITH ZIRCONIUM INTRODUCED WITH ZIRCONIUM TETRAFLUORIDE CASTING OF COMBINED POLYMER PATTERNS THAT ARE GASIFIED
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1