{"title":"Removal of Co-Frequency Powerline Harmonics From Multichannel Surface NMR Data","authors":"Lichao Liu, D. Grombacher, E. Auken, J. Larsen","doi":"10.3997/2214-4609.201702040","DOIUrl":null,"url":null,"abstract":"Powerline harmonics are often the primary noise source in surface nuclear magnetic resonance (NMR) measurements. State-of-the-art techniques, such as notch filtering, Wiener filtering, and model-based subtraction, have been demonstrated to greatly mitigate powerline harmonic noise, but these approaches break down when one of the powerline harmonics has a frequency close to or coincident with the Larmor frequency $f_{L}$ , referred to as a co-frequency harmonic. We propose a hybrid scheme where model-based subtraction of powerline harmonics is coupled with data from a synchronous reference coil to specifically subtract the co-frequency harmonic component. In standard model-based subtraction of powerline harmonics, a sinusoidal model of all harmonic components is fit to the data and subtracted. In the new approach, the amplitude and phase of the co-frequency harmonic are determined by a sinusoidal model fit to the synchronous noise-only data recorded in a reference coil. From the reference coil co-frequency model, the co-frequency harmonic in the primary coil is estimated using relationships between the amplitude and phase of the co-frequency harmonic in the two coils established during noise-only segments. By utilizing data from the reference coil to model the co-frequency harmonic, accidental fitting of the surface NMR signal is avoided. We investigate the efficiency of the method using a synthetic surface NMR signal embedded in noise-only data recorded in Denmark. Our results demonstrate that the co-frequency powerline harmonic can be removed efficiently without distorting the surface NMR signal and the new method performs better than standard methods.","PeriodicalId":13046,"journal":{"name":"IEEE Geoscience and Remote Sensing Letters","volume":"15 1","pages":"53-57"},"PeriodicalIF":4.0000,"publicationDate":"2017-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Geoscience and Remote Sensing Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3997/2214-4609.201702040","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 19
Abstract
Powerline harmonics are often the primary noise source in surface nuclear magnetic resonance (NMR) measurements. State-of-the-art techniques, such as notch filtering, Wiener filtering, and model-based subtraction, have been demonstrated to greatly mitigate powerline harmonic noise, but these approaches break down when one of the powerline harmonics has a frequency close to or coincident with the Larmor frequency $f_{L}$ , referred to as a co-frequency harmonic. We propose a hybrid scheme where model-based subtraction of powerline harmonics is coupled with data from a synchronous reference coil to specifically subtract the co-frequency harmonic component. In standard model-based subtraction of powerline harmonics, a sinusoidal model of all harmonic components is fit to the data and subtracted. In the new approach, the amplitude and phase of the co-frequency harmonic are determined by a sinusoidal model fit to the synchronous noise-only data recorded in a reference coil. From the reference coil co-frequency model, the co-frequency harmonic in the primary coil is estimated using relationships between the amplitude and phase of the co-frequency harmonic in the two coils established during noise-only segments. By utilizing data from the reference coil to model the co-frequency harmonic, accidental fitting of the surface NMR signal is avoided. We investigate the efficiency of the method using a synthetic surface NMR signal embedded in noise-only data recorded in Denmark. Our results demonstrate that the co-frequency powerline harmonic can be removed efficiently without distorting the surface NMR signal and the new method performs better than standard methods.
期刊介绍:
IEEE Geoscience and Remote Sensing Letters (GRSL) is a monthly publication for short papers (maximum length 5 pages) addressing new ideas and formative concepts in remote sensing as well as important new and timely results and concepts. Papers should relate to the theory, concepts and techniques of science and engineering as applied to sensing the earth, oceans, atmosphere, and space, and the processing, interpretation, and dissemination of this information. The technical content of papers must be both new and significant. Experimental data must be complete and include sufficient description of experimental apparatus, methods, and relevant experimental conditions. GRSL encourages the incorporation of "extended objects" or "multimedia" such as animations to enhance the shorter papers.