Effects of postharvest deficit irrigation on sweet cherry (Prunus avium) in five Okanagan Valley, Canada, orchards: I. Tree water status, photosynthesis, and growth

IF 1 4区 农林科学 Q3 AGRONOMY Canadian Journal of Plant Science Pub Date : 2022-11-24 DOI:10.1139/cjps-2022-0200
E. Houghton, K. Bevandick, D. Neilsen, K. Hannam, L. Nelson
{"title":"Effects of postharvest deficit irrigation on sweet cherry (Prunus avium) in five Okanagan Valley, Canada, orchards: I. Tree water status, photosynthesis, and growth","authors":"E. Houghton, K. Bevandick, D. Neilsen, K. Hannam, L. Nelson","doi":"10.1139/cjps-2022-0200","DOIUrl":null,"url":null,"abstract":"Abstract The timing and availability of water supply are changing in the Okanagan Valley, and the availability of irrigation water in the late summers is a growing concern. Postharvest deficit irrigation (PDI) is a strategy that can be used to reduce water demands in sweet cherry orchards; previous studies in this region have reported no change in plant physiology or tree growth with irrigation volume reductions of up to 25%, postharvest. However, the effects of more severe postharvest reductions in irrigation volume remain unknown. We compared the effects of full irrigation (100% of conventional grower practice through the growing season) with 27%–33% reductions in irrigation postharvest (∼70% of conventional grower practice) and 47%–52% reductions in irrigation postharvest (∼50% of conventional grower practice) over a 3-year period (2019–2021) in five commercial sweet cherry orchards that ranged in elevation and latitude across the Okanagan Valley, BC, Canada. In the growing season following treatment application, PDI had no effect on stem water potential or photosynthesis in any year and at any site; there were also no effects of PDI treatment on tree growth. Findings from this study suggest that postharvest stem water potentials from −0.5 to −1.3 MPa, and one-time stem water potentials as low as −2.0 MPa, have no lasting effects on future plant water status, rates of photosynthesis, or plant growth. PDI shows potential as an effective water-saving measure in sweet cherry orchards in the Okanagan Valley.","PeriodicalId":9530,"journal":{"name":"Canadian Journal of Plant Science","volume":"103 1","pages":"73 - 92"},"PeriodicalIF":1.0000,"publicationDate":"2022-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1139/cjps-2022-0200","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 4

Abstract

Abstract The timing and availability of water supply are changing in the Okanagan Valley, and the availability of irrigation water in the late summers is a growing concern. Postharvest deficit irrigation (PDI) is a strategy that can be used to reduce water demands in sweet cherry orchards; previous studies in this region have reported no change in plant physiology or tree growth with irrigation volume reductions of up to 25%, postharvest. However, the effects of more severe postharvest reductions in irrigation volume remain unknown. We compared the effects of full irrigation (100% of conventional grower practice through the growing season) with 27%–33% reductions in irrigation postharvest (∼70% of conventional grower practice) and 47%–52% reductions in irrigation postharvest (∼50% of conventional grower practice) over a 3-year period (2019–2021) in five commercial sweet cherry orchards that ranged in elevation and latitude across the Okanagan Valley, BC, Canada. In the growing season following treatment application, PDI had no effect on stem water potential or photosynthesis in any year and at any site; there were also no effects of PDI treatment on tree growth. Findings from this study suggest that postharvest stem water potentials from −0.5 to −1.3 MPa, and one-time stem water potentials as low as −2.0 MPa, have no lasting effects on future plant water status, rates of photosynthesis, or plant growth. PDI shows potential as an effective water-saving measure in sweet cherry orchards in the Okanagan Valley.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
采后亏缺灌溉对加拿大奥肯那根谷5个果园甜樱桃(Prunus avium)的影响:1 .树木水分状况、光合作用和生长
摘要奥卡纳根山谷的供水时间和可用性正在发生变化,夏末灌溉水的可用性越来越令人担忧。收获后亏缺灌溉(PDI)是一种可以用来减少甜樱桃园用水需求的策略;该地区先前的研究报告称,在采后灌溉量减少25%的情况下,植物生理学或树木生长没有变化。然而,更严重的采后灌溉量减少的影响仍然未知。我们比较了三年(2019-2021年)内,在海拔和海拔不同的五个商业甜樱桃园中,全灌溉(整个生长季节常规种植者做法的100%)与采后灌溉减少27%-33%(常规种植者做法约70%)和采后灌溉减少47%-52%(传统种植者做法约50%)的效果横跨加拿大不列颠哥伦比亚省奥卡纳根山谷的纬度。在施用处理后的生长季节,PDI对任何年份和任何地点的茎水势或光合作用没有影响;PDI处理对树木生长也没有影响。这项研究的结果表明,−0.5至−1.3 MPa的采后茎水势和低至−2.0 MPa的一次性茎水势对未来植物水分状况、光合作用速率或植物生长没有持久影响。PDI在奥卡纳根山谷的甜樱桃园显示出作为一种有效节水措施的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.90
自引率
8.30%
发文量
91
审稿时长
1 months
期刊介绍: Published since 1957, the Canadian Journal of Plant Science is a bimonthly journal that contains new research on all aspects of plant science relevant to continental climate agriculture, including plant production and management (grain, forage, industrial, and alternative crops), horticulture (fruit, vegetable, ornamental, greenhouse, and alternative crops), and pest management (entomology, plant pathology, and weed science). Cross-disciplinary research in the application of technology, plant breeding, genetics, physiology, biotechnology, microbiology, soil management, economics, meteorology, post-harvest biology, and plant production systems is also published. Research that makes a significant contribution to the advancement of knowledge of crop, horticulture, and weed sciences (e.g., drought or stress resistance), but not directly applicable to the environmental regions of Canadian agriculture, may also be considered. The Journal also publishes reviews, letters to the editor, the abstracts of technical papers presented at the meetings of the sponsoring societies, and occasionally conference proceedings.
期刊最新文献
An intellectual gap in root research on major crops of the Canadian Prairies Seeding rate and sulfur drive field pea yields in the Maritime region of Canada Alfalfa (Medicago sativa L.) quality is improved from tractor traffic implemented during harvest Evaluation of sequential mesotrione application rates and sequential tolpyralate and mesotrione applications for narrow-leaved goldenrod management in lowbush blueberry The potato vine crusher: a new tool for harvest weed seed control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1