V. B. Vukkum, Evan DelVecchio, S. Storck, R. Gupta
{"title":"Intergranular corrosion of feedstock modified – additively manufactured stainless steel after sensitization","authors":"V. B. Vukkum, Evan DelVecchio, S. Storck, R. Gupta","doi":"10.5006/4245","DOIUrl":null,"url":null,"abstract":"Laser powder bed fusion (LPBF), a metal additive manufacturing technique, was conducted on feedstock-modified 316L stainless steel (316L) powder produced by ball-milling of commercial 316L and 1 wt.% additive (Cerium oxide – CeO2, lanthanum (III) nitrate hexahydrate – La(NO3)3.6H2O and chromium nitride – CrN). The feedstock-modified LPBF-316L specimens were sensitized at 675 ℃ for 24 hours, and the influence of additives on intergranular corrosion (IGC) was investigated following ASTM G108-94 and A262-14 standards. The LPBF-316L with La(NO3)3.6H2O showed higher IGC resistance. The microstructure of the LPBF specimen was investigated and correlated to understand the improved IGC resistance of LPBF-316L with La(NO3)3.6H2O additive.","PeriodicalId":10717,"journal":{"name":"Corrosion","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Corrosion","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.5006/4245","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
Laser powder bed fusion (LPBF), a metal additive manufacturing technique, was conducted on feedstock-modified 316L stainless steel (316L) powder produced by ball-milling of commercial 316L and 1 wt.% additive (Cerium oxide – CeO2, lanthanum (III) nitrate hexahydrate – La(NO3)3.6H2O and chromium nitride – CrN). The feedstock-modified LPBF-316L specimens were sensitized at 675 ℃ for 24 hours, and the influence of additives on intergranular corrosion (IGC) was investigated following ASTM G108-94 and A262-14 standards. The LPBF-316L with La(NO3)3.6H2O showed higher IGC resistance. The microstructure of the LPBF specimen was investigated and correlated to understand the improved IGC resistance of LPBF-316L with La(NO3)3.6H2O additive.
期刊介绍:
CORROSION is the premier research journal featuring peer-reviewed technical articles from the world’s top researchers and provides a permanent record of progress in the science and technology of corrosion prevention and control. The scope of the journal includes the latest developments in areas of corrosion metallurgy, mechanisms, predictors, cracking (sulfide stress, stress corrosion, hydrogen-induced), passivation, and CO2 corrosion.
70+ years and over 7,100 peer-reviewed articles with advances in corrosion science and engineering have been published in CORROSION. The journal publishes seven article types – original articles, invited critical reviews, technical notes, corrosion communications fast-tracked for rapid publication, special research topic issues, research letters of yearly annual conference student poster sessions, and scientific investigations of field corrosion processes. CORROSION, the Journal of Science and Engineering, serves as an important communication platform for academics, researchers, technical libraries, and universities.
Articles considered for CORROSION should have significant permanent value and should accomplish at least one of the following objectives:
• Contribute awareness of corrosion phenomena,
• Advance understanding of fundamental process, and/or
• Further the knowledge of techniques and practices used to reduce corrosion.