Arun K. Bose, Andreas Rigling, Arthur Gessler, Frank Hagedorn, Ivano Brunner, Linda Feichtinger, Christof Bigler, Simon Egli, Sophia Etzold, Martin M. Gossner, Claudia Guidi, Mathieu Lévesque, Katrin Meusburger, Martina Peter, Matthias Saurer, Daniel Scherrer, Patrick Schleppi, Leonie Schönbeck, Michael E. Vogel, Georg von Arx, Beat Wermelinger, Thomas Wohlgemuth, Roman Zweifel, Marcus Schaub
{"title":"Lessons learned from a long-term irrigation experiment in a dry Scots pine forest: Impacts on traits and functioning","authors":"Arun K. Bose, Andreas Rigling, Arthur Gessler, Frank Hagedorn, Ivano Brunner, Linda Feichtinger, Christof Bigler, Simon Egli, Sophia Etzold, Martin M. Gossner, Claudia Guidi, Mathieu Lévesque, Katrin Meusburger, Martina Peter, Matthias Saurer, Daniel Scherrer, Patrick Schleppi, Leonie Schönbeck, Michael E. Vogel, Georg von Arx, Beat Wermelinger, Thomas Wohlgemuth, Roman Zweifel, Marcus Schaub","doi":"10.1002/ecm.1507","DOIUrl":null,"url":null,"abstract":"Climate change exposes ecosystems to strong and rapid changes in their environmental boundary conditions mainly due to the altered temperature and precipitation patterns. It is still poorly understood how fast interlinked ecosystem processes respond to altered environmental conditions, if these responses occur gradually or suddenly when thresholds are exceeded, and if the patterns of the responses will reach a stable state. We conducted an irrigation experiment in the Pfynwald, Switzerland from 2003-2018. A naturally dry Scots pine (Pinus sylvestris L.) forest was irrigated with amounts that doubled natural precipitation, thus releasing the forest stand from water limitation. The aim of this study was to provide a quantitative understanding on how different traits and functions of individual trees and the whole ecosystem responded to increased water availability, and how the patterns and magnitudes of these responses developed over time. We found that the response magnitude, the temporal trajectory of responses, and the length of initial lag period prior to significant response largely varied across traits. We detected rapid and stronger responses from above-ground tree traits (e.g., tree-ring width, needle length, and crown transparency) compared to below-ground tree traits (e.g., fine root biomass). The altered above-ground traits during the initial years of irrigation increased the water demand and trees adjusted by increasing root biomass during the later years of irrigation, resulting in an increased survival rate of Scots pine trees in irrigated plots. The irrigation also stimulated ecosystem-level foliar decomposition rate, fungal fruit body biomass, and regeneration abundances of broadleaved tree species. However, irrigation did not promote the regeneration of Scots pine trees which are reported to be vulnerable to extreme droughts. Our results provide extensive evidence that treeand ecosystem-level responses were pervasive across a number of traits on long-term temporal scales. However, after reaching a peak, the magnitude of these responses either decreased or reached a new stable state, providing important insights into how resource alterations could change the system functioning and its boundary conditions.","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":null,"pages":null},"PeriodicalIF":7.1000,"publicationDate":"2022-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://esajournals.onlinelibrary.wiley.com/doi/epdf/10.1002/ecm.1507","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Monographs","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ecm.1507","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 9
Abstract
Climate change exposes ecosystems to strong and rapid changes in their environmental boundary conditions mainly due to the altered temperature and precipitation patterns. It is still poorly understood how fast interlinked ecosystem processes respond to altered environmental conditions, if these responses occur gradually or suddenly when thresholds are exceeded, and if the patterns of the responses will reach a stable state. We conducted an irrigation experiment in the Pfynwald, Switzerland from 2003-2018. A naturally dry Scots pine (Pinus sylvestris L.) forest was irrigated with amounts that doubled natural precipitation, thus releasing the forest stand from water limitation. The aim of this study was to provide a quantitative understanding on how different traits and functions of individual trees and the whole ecosystem responded to increased water availability, and how the patterns and magnitudes of these responses developed over time. We found that the response magnitude, the temporal trajectory of responses, and the length of initial lag period prior to significant response largely varied across traits. We detected rapid and stronger responses from above-ground tree traits (e.g., tree-ring width, needle length, and crown transparency) compared to below-ground tree traits (e.g., fine root biomass). The altered above-ground traits during the initial years of irrigation increased the water demand and trees adjusted by increasing root biomass during the later years of irrigation, resulting in an increased survival rate of Scots pine trees in irrigated plots. The irrigation also stimulated ecosystem-level foliar decomposition rate, fungal fruit body biomass, and regeneration abundances of broadleaved tree species. However, irrigation did not promote the regeneration of Scots pine trees which are reported to be vulnerable to extreme droughts. Our results provide extensive evidence that treeand ecosystem-level responses were pervasive across a number of traits on long-term temporal scales. However, after reaching a peak, the magnitude of these responses either decreased or reached a new stable state, providing important insights into how resource alterations could change the system functioning and its boundary conditions.
期刊介绍:
The vision for Ecological Monographs is that it should be the place for publishing integrative, synthetic papers that elaborate new directions for the field of ecology.
Original Research Papers published in Ecological Monographs will continue to document complex observational, experimental, or theoretical studies that by their very integrated nature defy dissolution into shorter publications focused on a single topic or message.
Reviews will be comprehensive and synthetic papers that establish new benchmarks in the field, define directions for future research, contribute to fundamental understanding of ecological principles, and derive principles for ecological management in its broadest sense (including, but not limited to: conservation, mitigation, restoration, and pro-active protection of the environment). Reviews should reflect the full development of a topic and encompass relevant natural history, observational and experimental data, analyses, models, and theory. Reviews published in Ecological Monographs should further blur the boundaries between “basic” and “applied” ecology.
Concepts and Synthesis papers will conceptually advance the field of ecology. These papers are expected to go well beyond works being reviewed and include discussion of new directions, new syntheses, and resolutions of old questions.
In this world of rapid scientific advancement and never-ending environmental change, there needs to be room for the thoughtful integration of scientific ideas, data, and concepts that feeds the mind and guides the development of the maturing science of ecology. Ecological Monographs provides that room, with an expansive view to a sustainable future.