A novel nonlinear sliding mode observer to estimate biomass for lactic acid production

IF 1 Q4 ENGINEERING, CHEMICAL Chemical Product and Process Modeling Pub Date : 2022-12-27 DOI:10.1515/cppm-2021-0074
P. López-Pérez, Milagros López-López, C. Núñez-Colín, H. Mukhtar, R. Aguilar-López, V. Peña-Caballero
{"title":"A novel nonlinear sliding mode observer to estimate biomass for lactic acid production","authors":"P. López-Pérez, Milagros López-López, C. Núñez-Colín, H. Mukhtar, R. Aguilar-López, V. Peña-Caballero","doi":"10.1515/cppm-2021-0074","DOIUrl":null,"url":null,"abstract":"Abstract This study deals with the problem of estimating the amount of biomass and lactic acid concentration in a lactic acid production process. A continuous stirred tank bioreactor was used for the culture of Lactobacillus helveticus. A nonlinear sliding mode observer is proposed and designed, which gives an estimate of both the biomass and lactic acid concentrations as a function of glucose uptake from the culture medium. Numerical results are given to illustrate the effectiveness of the proposed observer against a standard sliding-mode observer. It was found that the proposed observer worked very well for the benchmark bioreactor model. Also, the numerical results indicated that the proposed estimation methodology was robust to the uncertainties associated with un-modelled dynamics. These new sensing technologies, when coupled to software models, improve performance for smart process control, monitoring, and prediction.","PeriodicalId":9935,"journal":{"name":"Chemical Product and Process Modeling","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Product and Process Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cppm-2021-0074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract This study deals with the problem of estimating the amount of biomass and lactic acid concentration in a lactic acid production process. A continuous stirred tank bioreactor was used for the culture of Lactobacillus helveticus. A nonlinear sliding mode observer is proposed and designed, which gives an estimate of both the biomass and lactic acid concentrations as a function of glucose uptake from the culture medium. Numerical results are given to illustrate the effectiveness of the proposed observer against a standard sliding-mode observer. It was found that the proposed observer worked very well for the benchmark bioreactor model. Also, the numerical results indicated that the proposed estimation methodology was robust to the uncertainties associated with un-modelled dynamics. These new sensing technologies, when coupled to software models, improve performance for smart process control, monitoring, and prediction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种新的非线性滑模观测器估计乳酸生产的生物量
摘要本研究涉及乳酸生产过程中生物量和乳酸浓度的估计问题。采用连续搅拌槽生物反应器培养瑞士乳杆菌。提出并设计了一种非线性滑模观测器,该观测器估计了生物量和乳酸浓度作为培养基葡萄糖摄取的函数。数值结果说明了所提出的观测器相对于标准滑模观测器的有效性。研究发现,所提出的观测器对于基准生物反应器模型非常有效。此外,数值结果表明,所提出的估计方法对与未建模动力学相关的不确定性具有鲁棒性。这些新的传感技术与软件模型相结合,可以提高智能过程控制、监控和预测的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Product and Process Modeling
Chemical Product and Process Modeling ENGINEERING, CHEMICAL-
CiteScore
2.10
自引率
11.10%
发文量
27
期刊介绍: Chemical Product and Process Modeling (CPPM) is a quarterly journal that publishes theoretical and applied research on product and process design modeling, simulation and optimization. Thanks to its international editorial board, the journal assembles the best papers from around the world on to cover the gap between product and process. The journal brings together chemical and process engineering researchers, practitioners, and software developers in a new forum for the international modeling and simulation community. Topics: equation oriented and modular simulation optimization technology for process and materials design, new modeling techniques shortcut modeling and design approaches performance of commercial and in-house simulation and optimization tools challenges faced in industrial product and process simulation and optimization computational fluid dynamics environmental process, food and pharmaceutical modeling topics drawn from the substantial areas of overlap between modeling and mathematics applied to chemical products and processes.
期刊最新文献
Layouts and tips for a typical final-year chemical engineering graduation project A parametric study on syngas production by adding CO2 and CH4 on steam gasification of biomass system using ASPEN Plus Temperature optimization model to inhibit zero-order kinetic reactions Numerical investigation of discharge pressure effect on steam ejector performance in renewable refrigeration cycle by considering wet steam model and dry gas model Energy efficiency in cooling systems: integrating machine learning and meta-heuristic algorithms for precise cooling load prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1