Francesco Borda, Angela Daniela La Rosa, Luigino Filice, Francesco Gagliardi
{"title":"Environmental impact of process constrained topology optimization design on automotive component’ life","authors":"Francesco Borda, Angela Daniela La Rosa, Luigino Filice, Francesco Gagliardi","doi":"10.1007/s12289-023-01771-2","DOIUrl":null,"url":null,"abstract":"<div><p>The components’ lightweighting has been pursued, especially in the transport industry, for greenhouse gas reduction. Topology optimization, being able to allocate the material within a provided design space, is a mathematical method that can support the design of lightweight components, preserving, at the same time, their mechanical performances. In this paper, a standard shape of a component, specifically an automotive bracket, was topology optimized by estimating the impacts of the new designs from an eco-friendly point of view. A subtractive, an additive and a casting manufacturing process were considered as possible manufacturing routes achieving an optimized geometry of the component for each of them. The topology optimizations were performed considering each processes’ peculiarities, introduced as constraints. Same strength for a given set of loads and boundary conditions was the target of each analysis. The component’s lightening can be considered environmentally friendly just after assessing the impacts associated with all the stages of the product’ life cycle. Indeed, each phase of the product’ life cycle can be affected, differently, by the performed topology optimization taking into account the peculiarities of the employed manufacturing process. The overall considerations on the most environmentally safe strategies can, therefore, change according to the specificities of the optimized shapes. The topology optimization showed its utmost potentiality, from a sustainable point of view, if applied to additive manufacturing techniques for the advantages arisen by the capability to manufacture complex shapes benefiting also of reduction time process owing to less material to be deposited.</p></div>","PeriodicalId":591,"journal":{"name":"International Journal of Material Forming","volume":"16 5","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12289-023-01771-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Material Forming","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12289-023-01771-2","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
The components’ lightweighting has been pursued, especially in the transport industry, for greenhouse gas reduction. Topology optimization, being able to allocate the material within a provided design space, is a mathematical method that can support the design of lightweight components, preserving, at the same time, their mechanical performances. In this paper, a standard shape of a component, specifically an automotive bracket, was topology optimized by estimating the impacts of the new designs from an eco-friendly point of view. A subtractive, an additive and a casting manufacturing process were considered as possible manufacturing routes achieving an optimized geometry of the component for each of them. The topology optimizations were performed considering each processes’ peculiarities, introduced as constraints. Same strength for a given set of loads and boundary conditions was the target of each analysis. The component’s lightening can be considered environmentally friendly just after assessing the impacts associated with all the stages of the product’ life cycle. Indeed, each phase of the product’ life cycle can be affected, differently, by the performed topology optimization taking into account the peculiarities of the employed manufacturing process. The overall considerations on the most environmentally safe strategies can, therefore, change according to the specificities of the optimized shapes. The topology optimization showed its utmost potentiality, from a sustainable point of view, if applied to additive manufacturing techniques for the advantages arisen by the capability to manufacture complex shapes benefiting also of reduction time process owing to less material to be deposited.
期刊介绍:
The Journal publishes and disseminates original research in the field of material forming. The research should constitute major achievements in the understanding, modeling or simulation of material forming processes. In this respect ‘forming’ implies a deliberate deformation of material.
The journal establishes a platform of communication between engineers and scientists, covering all forming processes, including sheet forming, bulk forming, powder forming, forming in near-melt conditions (injection moulding, thixoforming, film blowing etc.), micro-forming, hydro-forming, thermo-forming, incremental forming etc. Other manufacturing technologies like machining and cutting can be included if the focus of the work is on plastic deformations.
All materials (metals, ceramics, polymers, composites, glass, wood, fibre reinforced materials, materials in food processing, biomaterials, nano-materials, shape memory alloys etc.) and approaches (micro-macro modelling, thermo-mechanical modelling, numerical simulation including new and advanced numerical strategies, experimental analysis, inverse analysis, model identification, optimization, design and control of forming tools and machines, wear and friction, mechanical behavior and formability of materials etc.) are concerned.