Multi-Step-Ahead Prediction Intervals for Nonparametric Autoregressions via Bootstrap: Consistency, Debiasing, and Pertinence

IF 0.9 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Stats Pub Date : 2023-08-11 DOI:10.3390/stats6030053
D. Politis, Kejin Wu
{"title":"Multi-Step-Ahead Prediction Intervals for Nonparametric Autoregressions via Bootstrap: Consistency, Debiasing, and Pertinence","authors":"D. Politis, Kejin Wu","doi":"10.3390/stats6030053","DOIUrl":null,"url":null,"abstract":"To address the difficult problem of the multi-step-ahead prediction of nonparametric autoregressions, we consider a forward bootstrap approach. Employing a local constant estimator, we can analyze a general type of nonparametric time-series model and show that the proposed point predictions are consistent with the true optimal predictor. We construct a quantile prediction interval that is asymptotically valid. Moreover, using a debiasing technique, we can asymptotically approximate the distribution of multi-step-ahead nonparametric estimation by the bootstrap. As a result, we can build bootstrap prediction intervals that are pertinent, i.e., can capture the model estimation variability, thus improving the standard quantile prediction intervals. Simulation studies are presented to illustrate the performance of our point predictions and pertinent prediction intervals for finite samples.","PeriodicalId":93142,"journal":{"name":"Stats","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stats","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/stats6030053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

To address the difficult problem of the multi-step-ahead prediction of nonparametric autoregressions, we consider a forward bootstrap approach. Employing a local constant estimator, we can analyze a general type of nonparametric time-series model and show that the proposed point predictions are consistent with the true optimal predictor. We construct a quantile prediction interval that is asymptotically valid. Moreover, using a debiasing technique, we can asymptotically approximate the distribution of multi-step-ahead nonparametric estimation by the bootstrap. As a result, we can build bootstrap prediction intervals that are pertinent, i.e., can capture the model estimation variability, thus improving the standard quantile prediction intervals. Simulation studies are presented to illustrate the performance of our point predictions and pertinent prediction intervals for finite samples.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Bootstrap的非参数自回归的多步预测区间:一致性、去偏性和相关性
为了解决非参数自回归的多步预测难题,我们考虑了一种前向自举方法。利用局部常数估计量,我们可以分析一般类型的非参数时间序列模型,并证明所提出的点预测与真正的最优预测是一致的。我们构造了一个渐近有效的分位数预测区间。此外,利用消偏技术,我们可以用自举法渐近逼近多步超前非参数估计的分布。因此,我们可以构建相关的自举预测区间,即可以捕获模型估计的可变性,从而改进标准分位数预测区间。仿真研究说明了我们的点预测和有限样本的相关预测区间的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
审稿时长
7 weeks
期刊最新文献
Bidirectional f-Divergence-Based Deep Generative Method for Imputing Missing Values in Time-Series Data. Investigating Risk Factors for Racial Disparity in E-Cigarette Use with PATH Study. Precise Tensor Product Smoothing via Spectral Splines Predicting Random Walks and a Data-Splitting Prediction Region The Mediating Impact of Innovation Types in the Relationship between Innovation Use Theory and Market Performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1