Alterations and Mechanism of Gut Microbiota in Graves’ Disease and Hashimoto’s Thyroiditis

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2022-06-01 DOI:10.33073/pjm-2022-016
Hong Zhao, Lijie Yuan, Dongli Zhu, Banghao Sun, Juan Du, Jingyuan Wang
{"title":"Alterations and Mechanism of Gut Microbiota in Graves’ Disease and Hashimoto’s Thyroiditis","authors":"Hong Zhao, Lijie Yuan, Dongli Zhu, Banghao Sun, Juan Du, Jingyuan Wang","doi":"10.33073/pjm-2022-016","DOIUrl":null,"url":null,"abstract":"Abstract To explore the role of gut microbiota in Graves’ disease (GD) and Hashimoto’s thyroiditis (HT). Seventy fecal samples were collected, including 27 patients with GD, 27 with HT, and 16 samples from healthy volunteers. Chemiluminescence was used to detect thyroid function and autoantibodies (FT3, FT4, TSH, TRAb, TGAb, and TPOAb); thyroid ultrasound and 16S sequencing were used to analyze the bacteria in fecal samples; KEGG (Kyoto Encyclopedia of Genes and Genomes) and COG (Clusters of Orthologous Groups) were used to analyze the functional prediction and pathogenesis. The overall structure of gut microbiota in the GD and HT groups was significantly different from the healthy control group. Proteobacteria and Actinobacteria contents were the highest in the HT group. Compared to the control group, the GD and HT groups had a higher abundance of Erysipelotrichia, Cyanobacteria, and Ruminococcus_2 and lower levels of Bacillaceae and Megamonas. Further analysis of KEGG found that the “ABC transporter” metabolic pathway was highly correlated with the occurrence of GD and HT. COG analysis showed that the GD and HT groups were enriched in carbohydrate transport and metabolism compared to the healthy control group but not in amino acid transport and metabolism. Our data suggested that Bacillus, Blautia, and Ornithinimicrobium could be used as potential markers to distinguish GD and HT from the healthy population and that “ABC transporter” metabolic pathway may be involved in the pathogenesis of GD and HT.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.33073/pjm-2022-016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 7

Abstract

Abstract To explore the role of gut microbiota in Graves’ disease (GD) and Hashimoto’s thyroiditis (HT). Seventy fecal samples were collected, including 27 patients with GD, 27 with HT, and 16 samples from healthy volunteers. Chemiluminescence was used to detect thyroid function and autoantibodies (FT3, FT4, TSH, TRAb, TGAb, and TPOAb); thyroid ultrasound and 16S sequencing were used to analyze the bacteria in fecal samples; KEGG (Kyoto Encyclopedia of Genes and Genomes) and COG (Clusters of Orthologous Groups) were used to analyze the functional prediction and pathogenesis. The overall structure of gut microbiota in the GD and HT groups was significantly different from the healthy control group. Proteobacteria and Actinobacteria contents were the highest in the HT group. Compared to the control group, the GD and HT groups had a higher abundance of Erysipelotrichia, Cyanobacteria, and Ruminococcus_2 and lower levels of Bacillaceae and Megamonas. Further analysis of KEGG found that the “ABC transporter” metabolic pathway was highly correlated with the occurrence of GD and HT. COG analysis showed that the GD and HT groups were enriched in carbohydrate transport and metabolism compared to the healthy control group but not in amino acid transport and metabolism. Our data suggested that Bacillus, Blautia, and Ornithinimicrobium could be used as potential markers to distinguish GD and HT from the healthy population and that “ABC transporter” metabolic pathway may be involved in the pathogenesis of GD and HT.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Graves病和桥本甲状腺炎患者肠道菌群的变化及其机制
探讨肠道菌群在Graves病(GD)和桥本甲状腺炎(HT)中的作用。收集了70份粪便样本,其中GD患者27例,HT患者27例,健康志愿者16例。化学发光法检测甲状腺功能及自身抗体(FT3、FT4、TSH、TRAb、TGAb、TPOAb);采用甲状腺超声和16S测序对粪便样品进行细菌分析;利用京都基因与基因组百科全书(KEGG)和COG (Clusters of Orthologous Groups)对其功能预测和发病机制进行分析。GD组和HT组的肠道菌群总体结构与健康对照组有显著差异。变形菌群和放线菌群含量以HT组最高。与对照组相比,GD和HT组丹毒毛菌、蓝藻菌和瘤胃球菌的丰度较高,杆菌科和巨单胞菌的丰度较低。进一步分析KEGG发现,“ABC转运体”代谢途径与GD和HT的发生高度相关。COG分析显示,与健康对照组相比,GD和HT组碳水化合物运输和代谢富集,但氨基酸运输和代谢不富集。我们的数据提示芽孢杆菌、Blautia和ornithinimicroum可以作为区分GD和HT与健康人群的潜在标志物,“ABC转运体”代谢途径可能参与了GD和HT的发病机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1