Efficiency of KOH-activated carbon for removal of heavy metal pollution from water

Q4 Chemistry Mongolian Journal of Chemistry Pub Date : 2022-05-27 DOI:10.5564/mjc.v23i49.1406
N. Byamba-Ochir, Nazgul Muratbyek, Narangarav Tumen-Ulzii, Ariunaa Alyeksandr, Nasantogtokh Oyunchimeg
{"title":"Efficiency of KOH-activated carbon for removal of heavy metal pollution from water","authors":"N. Byamba-Ochir, Nazgul Muratbyek, Narangarav Tumen-Ulzii, Ariunaa Alyeksandr, Nasantogtokh Oyunchimeg","doi":"10.5564/mjc.v23i49.1406","DOIUrl":null,"url":null,"abstract":"The study to reduce heavy metals pollution from water using the KOH-activated carbon was studied the factors affecting the adsorption capacities of Cu(II) and Pb(II), in particular, initial metals concentration, pH of the solution, and contact time in static conditions. Using X-ray photoelectron spectroscopy and FTIR analysis to determine the elemental composition and surface functional groups of the activated carbon surface, the presence of oxygen-related functional groups was observed. The maximum adsorption capacities were 135.8 mg g-1 and 31.0 mg g-1 for removal of lead and copper solutions with the initial concentration of 300 mg L-1 of metal at 318 K, respectively. The removal percentage was found to be higher for Pb (II) when compared with Cu (II).","PeriodicalId":36661,"journal":{"name":"Mongolian Journal of Chemistry","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mongolian Journal of Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5564/mjc.v23i49.1406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 0

Abstract

The study to reduce heavy metals pollution from water using the KOH-activated carbon was studied the factors affecting the adsorption capacities of Cu(II) and Pb(II), in particular, initial metals concentration, pH of the solution, and contact time in static conditions. Using X-ray photoelectron spectroscopy and FTIR analysis to determine the elemental composition and surface functional groups of the activated carbon surface, the presence of oxygen-related functional groups was observed. The maximum adsorption capacities were 135.8 mg g-1 and 31.0 mg g-1 for removal of lead and copper solutions with the initial concentration of 300 mg L-1 of metal at 318 K, respectively. The removal percentage was found to be higher for Pb (II) when compared with Cu (II).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
KOH活性炭去除水中重金属污染的效果
研究了koh活性炭在静态条件下对Cu(II)和Pb(II)吸附能力的影响因素,特别是初始金属浓度、溶液pH和接触时间。利用x射线光电子能谱和FTIR分析测定活性炭表面的元素组成和表面官能团,观察到氧相关官能团的存在。在318 K条件下,初始金属浓度为300 mg L-1时,对铅和铜的最大吸附量分别为135.8 mg g-1和31.0 mg g-1。与Cu (II)相比,Pb (II)的去除率更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Mongolian Journal of Chemistry
Mongolian Journal of Chemistry Materials Science-Materials Chemistry
CiteScore
1.10
自引率
0.00%
发文量
5
审稿时长
20 weeks
期刊最新文献
Antibacterial and photocatalytic effects of newly synthesized zinc oxide nanoparticles derived from Mongolian honey Engineering polyamide materials: s-triazine framework with specialized bulky side chains for advanced applications Cytotoxicity screening of 114 Mongolian plant extracts on liver, colon, breast, and cervix cancer cell lines Study of Oxadiazole derivatives as precursor for multi-functional inhibitor to SARS-CoV-2: A detailed virtual screening analysis Study of Oxadiazole derivatives as precursor for multi-functional inhibitor to SARS-CoV-2: A detailed virtual screening analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1