{"title":"Electrospinning Growth Parameters Dependent PVP: PC71BM Nanofiber Structure Characterizations and Modeling","authors":"N. Bolong, I. Saad, B. Ghosh","doi":"10.22079/JMSR.2020.127883.1387","DOIUrl":null,"url":null,"abstract":"As green materials, the organic nano-fiber membranes are very potential for diverse functional purposes. The growth parameters based fiber alignment; surface morphology and diameter are key attentions to control mechanical, structural, electrical, and optical properties. These physical aspects of nanofiber are diversified its practical significance in which control of growth techniques is vital. Electrospinning is a facile but pragmatic approach to adjust the growth process by regulating growth parameters. In this study, fabrication of spinning parameter preference to control the nanofiber shape, diameters, and crystalline property are investigated. Different % weight of PVP and PC71BM mixture solution for electrospinning are used in this study. It is observed that the average applied field and solution concentration of active materials are paramount to well-aligned uniform diameter nanofiber having better structure and crystalline properties. The scanning electron microscopic (SEM) study of nanofiber micrograph shows the diameter size of nanofiber and it is validated by Response Surface Model (RSM). A sharp peak of polymer fiber is shown by X-ray diffraction (XRD) that realizes worthy nano-crystalline property. The overall growth process is reinforced by validation from RSM analysis.","PeriodicalId":16427,"journal":{"name":"Journal of Membrane Science and Research","volume":"6 1","pages":"433-437"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science and Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22079/JMSR.2020.127883.1387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0
Abstract
As green materials, the organic nano-fiber membranes are very potential for diverse functional purposes. The growth parameters based fiber alignment; surface morphology and diameter are key attentions to control mechanical, structural, electrical, and optical properties. These physical aspects of nanofiber are diversified its practical significance in which control of growth techniques is vital. Electrospinning is a facile but pragmatic approach to adjust the growth process by regulating growth parameters. In this study, fabrication of spinning parameter preference to control the nanofiber shape, diameters, and crystalline property are investigated. Different % weight of PVP and PC71BM mixture solution for electrospinning are used in this study. It is observed that the average applied field and solution concentration of active materials are paramount to well-aligned uniform diameter nanofiber having better structure and crystalline properties. The scanning electron microscopic (SEM) study of nanofiber micrograph shows the diameter size of nanofiber and it is validated by Response Surface Model (RSM). A sharp peak of polymer fiber is shown by X-ray diffraction (XRD) that realizes worthy nano-crystalline property. The overall growth process is reinforced by validation from RSM analysis.
期刊介绍:
The Journal of Membrane Science and Research (JMSR) is an Open Access journal with Free of Charge publication policy, which provides a focal point for academic and industrial chemical and polymer engineers, chemists, materials scientists, and membranologists working on both membranes and membrane processes, particularly for four major sectors, including Energy, Water, Environment and Food. The journal publishes original research and reviews on membranes (organic, inorganic, liquid and etc.) and membrane processes (MF, UF, NF, RO, ED, Dialysis, MD, PV, CDI, FO, GP, VP and etc.), membrane formation/structure/performance, fouling, module/process design, and processes/applications in various areas. Primary emphasis is on structure, function, and performance of essentially non-biological membranes.