{"title":"A biological brain-inspired fuzzy neural network: Fuzzy emotional neural network","authors":"Ehsan Zamirpour, Mohammad Mosleh","doi":"10.1016/j.bica.2018.07.019","DOIUrl":null,"url":null,"abstract":"<div><p><span>In this paper, a brain-inspired fuzzy emotional neural network (FUZZ-ENN) is proposed for uncertainty prediction tasks in </span>real world applications<span><span><span>. In the proposed FUZZ-ENN, amygdala connections are modeled by fuzzy IF-THEN behavioral rules and orbitofrontal module inhibits the amygdala responses in order to decrease the uncertainty. This </span>computational model is based on the </span>inhibitory connections<span> in the human emotional brain’s nervous system<span><span> inhibiting the uncertainty. In this paper, genetic algorithm is applied for optimal tuning of crisp numerical and fuzzy parameters of the proposed model. A traditional </span>neural model and a two layered emotional neural network (ENN) are also implemented for comparison purposes on the electrical load and wind power forecasting problem and the prediction of geomagnetic activity indices as two real world case studies. Numerical results indicate the superiority of the proposed approach in term of lower uncertainty in the prediction.</span></span></span></p></div>","PeriodicalId":48756,"journal":{"name":"Biologically Inspired Cognitive Architectures","volume":"26 ","pages":"Pages 80-90"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.bica.2018.07.019","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biologically Inspired Cognitive Architectures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212683X17301457","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Psychology","Score":null,"Total":0}
引用次数: 13
Abstract
In this paper, a brain-inspired fuzzy emotional neural network (FUZZ-ENN) is proposed for uncertainty prediction tasks in real world applications. In the proposed FUZZ-ENN, amygdala connections are modeled by fuzzy IF-THEN behavioral rules and orbitofrontal module inhibits the amygdala responses in order to decrease the uncertainty. This computational model is based on the inhibitory connections in the human emotional brain’s nervous system inhibiting the uncertainty. In this paper, genetic algorithm is applied for optimal tuning of crisp numerical and fuzzy parameters of the proposed model. A traditional neural model and a two layered emotional neural network (ENN) are also implemented for comparison purposes on the electrical load and wind power forecasting problem and the prediction of geomagnetic activity indices as two real world case studies. Numerical results indicate the superiority of the proposed approach in term of lower uncertainty in the prediction.
期刊介绍:
Announcing the merge of Biologically Inspired Cognitive Architectures with Cognitive Systems Research.
Cognitive Systems Research is dedicated to the study of human-level cognition. As such, it welcomes papers which advance the understanding, design and applications of cognitive and intelligent systems, both natural and artificial.
The journal brings together a broad community studying cognition in its many facets in vivo and in silico, across the developmental spectrum, focusing on individual capacities or on entire architectures. It aims to foster debate and integrate ideas, concepts, constructs, theories, models and techniques from across different disciplines and different perspectives on human-level cognition. The scope of interest includes the study of cognitive capacities and architectures - both brain-inspired and non-brain-inspired - and the application of cognitive systems to real-world problems as far as it offers insights relevant for the understanding of cognition.
Cognitive Systems Research therefore welcomes mature and cutting-edge research approaching cognition from a systems-oriented perspective, both theoretical and empirically-informed, in the form of original manuscripts, short communications, opinion articles, systematic reviews, and topical survey articles from the fields of Cognitive Science (including Philosophy of Cognitive Science), Artificial Intelligence/Computer Science, Cognitive Robotics, Developmental Science, Psychology, and Neuroscience and Neuromorphic Engineering. Empirical studies will be considered if they are supplemented by theoretical analyses and contributions to theory development and/or computational modelling studies.