Identifying Common and Idiosyncratic Explosive Behaviors in the Large Dimensional Factor Model with an Application to U.S. State-Level House Prices

Q3 Mathematics Journal of Econometric Methods Pub Date : 2023-03-14 DOI:10.1515/jem-2022-0017
Tetsushi Horie, Yohei Yamamoto
{"title":"Identifying Common and Idiosyncratic Explosive Behaviors in the Large Dimensional Factor Model with an Application to U.S. State-Level House Prices","authors":"Tetsushi Horie, Yohei Yamamoto","doi":"10.1515/jem-2022-0017","DOIUrl":null,"url":null,"abstract":"Abstract This study applies the date-stamping methodologies for explosive behaviors proposed in the seminal work of Phillips, P. C. B., and J. Yu. (2011. “Dating the Timeline of Financial Bubbles during the Subprime Crisis.” Quantitative Economics 2 (3): 455–91), Phillips, P. C. B., S. Shi, and J. Yu. (2015a. “Testing for Multiple Bubbles: Historical Episodes of Exuberance and Collapse in the S&P 500.” International Economic Review 56 (4): 1043–78), and Phillips, P. C. B., S. Shi, and J. Yu. (2015b. “Testing for Multiple Bubbles: Limit Theory of Real Time Detectors.” International Economic Review 56 (4): 1079–134) to a large dimensional factor model. To this end, we compare two methods of identifying common and idiosyncratic components: the Panel Analysis of Nonstationarity in Idiosyncratic and Common Components (PANIC) method by Bai, J., and S. Ng. (2004. “A Panic Attack on Unit Roots and Cointegration.” Econometrica 72 (4): 1127–77) and the Cross-Sectional regression (CS) method by Yamamoto, Y., and T. Horie. (2022. “A Cross-Sectional Method for Right-Tailed PANIC Tests under a Moderately Local to Unity Framework.” Econometric Theory (forthcoming)). We show that, when the explosive behavior lies only in the common component, the origination and termination dates are precisely estimated by either method. However, when the explosive behaviors exist in idiosyncratic components, only the CS method can detect them. We apply our method to the U.S. state-level real house price indices. We find that the 2000s boom was driven by not only the national bubble factors but also local components, while the 2010s onward expansion is dominated by the effect of national components.","PeriodicalId":36727,"journal":{"name":"Journal of Econometric Methods","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometric Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jem-2022-0017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract This study applies the date-stamping methodologies for explosive behaviors proposed in the seminal work of Phillips, P. C. B., and J. Yu. (2011. “Dating the Timeline of Financial Bubbles during the Subprime Crisis.” Quantitative Economics 2 (3): 455–91), Phillips, P. C. B., S. Shi, and J. Yu. (2015a. “Testing for Multiple Bubbles: Historical Episodes of Exuberance and Collapse in the S&P 500.” International Economic Review 56 (4): 1043–78), and Phillips, P. C. B., S. Shi, and J. Yu. (2015b. “Testing for Multiple Bubbles: Limit Theory of Real Time Detectors.” International Economic Review 56 (4): 1079–134) to a large dimensional factor model. To this end, we compare two methods of identifying common and idiosyncratic components: the Panel Analysis of Nonstationarity in Idiosyncratic and Common Components (PANIC) method by Bai, J., and S. Ng. (2004. “A Panic Attack on Unit Roots and Cointegration.” Econometrica 72 (4): 1127–77) and the Cross-Sectional regression (CS) method by Yamamoto, Y., and T. Horie. (2022. “A Cross-Sectional Method for Right-Tailed PANIC Tests under a Moderately Local to Unity Framework.” Econometric Theory (forthcoming)). We show that, when the explosive behavior lies only in the common component, the origination and termination dates are precisely estimated by either method. However, when the explosive behaviors exist in idiosyncratic components, only the CS method can detect them. We apply our method to the U.S. state-level real house price indices. We find that the 2000s boom was driven by not only the national bubble factors but also local components, while the 2010s onward expansion is dominated by the effect of national components.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
识别大维因子模型中常见和特殊的爆炸行为及其在美国州房价中的应用
摘要本研究应用了Phillips、P.C.B.和J.Yu的开创性工作中提出的爆炸行为的日期戳方法。(2011年,《次贷危机期间金融泡沫的时间线》,数量经济学2(3):455-91),Phillips,P.C.B.,S.Shi和J.Yu。(2015a,《多重泡沫的检验:标准普尔500指数暴涨和暴跌的历史事件》,《国际经济评论》第56期(4):1043-78页),以及Phillips,P.C.B.,S.Shi和J.Yu。(2015b,“多个气泡的测试:实时检测器的极限理论”,《国际经济评论》第56(4)期:1079-134)。为此,我们比较了识别共同成分和特殊成分的两种方法:Bai,J.和S.Ng.(2004。“对单位根和协整的恐慌性攻击”,《计量经济学》72(4):1127-77)和Yamamoto,Y.和T.Horie的横断面回归(CS)方法。(2022年,《适度局部到统一框架下右尾PANIC测试的横截面方法》,《计量经济学理论》(即将出版)。我们证明,当爆炸行为仅存在于共同成分中时,通过任何一种方法都可以精确估计起始和终止日期。然而,当爆炸行为存在于特殊成分中时,只有CS方法才能检测到。我们将我们的方法应用于美国州级实际房价指数。我们发现,2000年代的繁荣不仅是由国家泡沫因素驱动的,还由地方因素驱动,而2010年代的进一步扩张是由国家因素的影响主导的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Econometric Methods
Journal of Econometric Methods Economics, Econometrics and Finance-Economics and Econometrics
CiteScore
2.20
自引率
0.00%
发文量
7
期刊最新文献
Estimation of Causal Effects with a Binary Treatment Variable: A Unified M-Estimation Framework Introduction to Latent Variable Estimation for Undergraduate Econometrics: An Application with Disney Theme Park Ride Wait Times Does Health Behavior Change After Diagnosis? Evidence From Fuzzy Regression Discontinuity Matching on Noise: Finite Sample Bias in the Synthetic Control Estimator Nonparametric Instrumental Regression with Two-Way Fixed Effects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1