Scratch Resistance of High Velocity Oxy-Fuel Sprayed WC-20% Co Coatings Reinforced with Carbon Nanotubes

Q4 Materials Science Journal of Surface Science and Technology Pub Date : 2020-08-20 DOI:10.18311/JSST/2020/24184
G. M. T. Basha, B. Venkateshwarlu
{"title":"Scratch Resistance of High Velocity Oxy-Fuel Sprayed WC-20% Co Coatings Reinforced with Carbon Nanotubes","authors":"G. M. T. Basha, B. Venkateshwarlu","doi":"10.18311/JSST/2020/24184","DOIUrl":null,"url":null,"abstract":"Tungsten Carbide-20 weight % Cobalt (WC-20 wt% Co) coatings were extensively used material to achieve a combination of extreme hardness and excellent strength. Hence, an effort has been made to improve the toughening properties of WC-Co coatings through reinforcement of Carbon Nano-Tubes (CNTs) using High-Velocity Oxy-Fuel (HVOF) spraying process. In this work, 2 wt%, 4 wt%, and 6 wt% of CNTs were blended by the ball milling process with WC-Co powders. These composed powders were deposited by HVOF process on to the plain mild steel substrates. The scratch test analysis on as-sprayed coatings showed that due to the addition of CNTs on WC-Co coatings, the resistance to penetrate the coating surface increased. Also, by varying the percentage of CNTs in the coating system, the pores were reduced. This phenomenon is attributed to the toughening mechanism by forming a CNT bridge which avoids the formation of internal cracks.","PeriodicalId":17031,"journal":{"name":"Journal of Surface Science and Technology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Surface Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18311/JSST/2020/24184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 2

Abstract

Tungsten Carbide-20 weight % Cobalt (WC-20 wt% Co) coatings were extensively used material to achieve a combination of extreme hardness and excellent strength. Hence, an effort has been made to improve the toughening properties of WC-Co coatings through reinforcement of Carbon Nano-Tubes (CNTs) using High-Velocity Oxy-Fuel (HVOF) spraying process. In this work, 2 wt%, 4 wt%, and 6 wt% of CNTs were blended by the ball milling process with WC-Co powders. These composed powders were deposited by HVOF process on to the plain mild steel substrates. The scratch test analysis on as-sprayed coatings showed that due to the addition of CNTs on WC-Co coatings, the resistance to penetrate the coating surface increased. Also, by varying the percentage of CNTs in the coating system, the pores were reduced. This phenomenon is attributed to the toughening mechanism by forming a CNT bridge which avoids the formation of internal cracks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
碳纳米管增强WC-20%Co高速氧燃料喷涂涂层的耐刮擦性能
碳化钨-20重量%钴(WC-20重量% Co)涂层是广泛使用的材料,以实现极高的硬度和优异的强度。因此,采用高速氧燃料(HVOF)喷涂工艺对碳纳米管(CNTs)进行强化,以提高WC-Co涂层的增韧性能。在这项工作中,通过球磨工艺将2 wt%、4 wt%和6 wt%的碳纳米管与WC-Co粉末混合。采用HVOF工艺将这些复合粉末沉积在普通低碳钢基体上。对喷涂后涂层的划痕试验分析表明,由于在WC-Co涂层上添加了CNTs,涂层表面的穿透阻力增加。此外,通过改变涂层体系中碳纳米管的百分比,气孔也减少了。这一现象归因于碳纳米管桥的增韧机制,避免了内部裂纹的形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊介绍: The Indian Society for Surface Science and Technology is an organization for the cultivation, interaction and dissemination of knowledge in the field of surface science and technology. It also strives to promote Industry-Academia interaction
期刊最新文献
Revealing melt-vapor-powder interaction towards laser powder bed fusion process via DEM-CFD coupled model Progress and challenges in energy storage and utilization via ammonia Deposition of DLC film on the inner surface of N80 pipeline by hollow cathode PECVD Improving activity and barrier properties of epoxy modified polyurethane coating with in-situ polymerized polypyrrole functionalized graphene oxide Machined surface formation and integrity control technology of SiCp/Al composites: a review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1