{"title":"Mathematical Modelling of Non-Linear Transient Long Waves by using Finite Element Method in an Irregular Shaped Harbour","authors":"Sukhwinder Kaur, P. Kumar, Rajni","doi":"10.1080/13873954.2021.1973510","DOIUrl":null,"url":null,"abstract":"ABSTRACT Extreme waves significantly affect the coastal structures, activities, and population. Therefore, investigation of extreme wave impact on coastal regions is essential. In this study, a mathematical model is presented to analyse the impact of transient long waves on coastal structures. The mathematical model is constructed based on the Boussinesq equation (BE) with variable water depth including dispersion properties. The numerical solution of BE is constructed by using FEM. The present numerical model is validated through the existing study of Lepelletier (1981) and convergence analysis is also conducted to determine the convergence rate. The present FEM model is implemented on realistic Paradip port, Odisha, India to determine the wave amplitude at various record stations. In addition, the impact of incident waves with angular variation is analysed in the Paradip port. The causes and countermeasures have been proposed based on the simulation results to improve the resonance in the port.","PeriodicalId":49871,"journal":{"name":"Mathematical and Computer Modelling of Dynamical Systems","volume":"27 1","pages":"411 - 428"},"PeriodicalIF":1.8000,"publicationDate":"2021-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical and Computer Modelling of Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/13873954.2021.1973510","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACT Extreme waves significantly affect the coastal structures, activities, and population. Therefore, investigation of extreme wave impact on coastal regions is essential. In this study, a mathematical model is presented to analyse the impact of transient long waves on coastal structures. The mathematical model is constructed based on the Boussinesq equation (BE) with variable water depth including dispersion properties. The numerical solution of BE is constructed by using FEM. The present numerical model is validated through the existing study of Lepelletier (1981) and convergence analysis is also conducted to determine the convergence rate. The present FEM model is implemented on realistic Paradip port, Odisha, India to determine the wave amplitude at various record stations. In addition, the impact of incident waves with angular variation is analysed in the Paradip port. The causes and countermeasures have been proposed based on the simulation results to improve the resonance in the port.
期刊介绍:
Mathematical and Computer Modelling of Dynamical Systems (MCMDS) publishes high quality international research that presents new ideas and approaches in the derivation, simplification, and validation of models and sub-models of relevance to complex (real-world) dynamical systems.
The journal brings together engineers and scientists working in different areas of application and/or theory where researchers can learn about recent developments across engineering, environmental systems, and biotechnology amongst other fields. As MCMDS covers a wide range of application areas, papers aim to be accessible to readers who are not necessarily experts in the specific area of application.
MCMDS welcomes original articles on a range of topics including:
-methods of modelling and simulation-
automation of modelling-
qualitative and modular modelling-
data-based and learning-based modelling-
uncertainties and the effects of modelling errors on system performance-
application of modelling to complex real-world systems.