{"title":"Novel RFI Mitigation Methods in the Square Kilometre Array 1 Mid Correlator Beamformer","authors":"T. Gunaratne, B. Carlson, G. Comoretto","doi":"10.1142/S2251171719400117","DOIUrl":null,"url":null,"abstract":"The Square Kilometre Array (SKA) Phase 1 Mid Correlator Beamformer (Mid.CBF) adopts two novel methods to mitigate radio frequency interference (RFI) at the various stages of its signal chains. First, the pioneering Sample Clock Frequency Offset (SCFO) sampling suppresses interference which leaks into individual ‘Frequency-Slice’ (FS) (sub-bands) in the cross-correlations. Second, the ‘Shift-Resample-Shift-Back’ method minimizes the addition of noise due to strong clustered RFI. Empirical studies conducted with simulation of the systems confirm that the proposed methods significantly reduce the impact of RFI on the output of the radio telescope.","PeriodicalId":45132,"journal":{"name":"Journal of Astronomical Instrumentation","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S2251171719400117","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Astronomical Instrumentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S2251171719400117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 5
Abstract
The Square Kilometre Array (SKA) Phase 1 Mid Correlator Beamformer (Mid.CBF) adopts two novel methods to mitigate radio frequency interference (RFI) at the various stages of its signal chains. First, the pioneering Sample Clock Frequency Offset (SCFO) sampling suppresses interference which leaks into individual ‘Frequency-Slice’ (FS) (sub-bands) in the cross-correlations. Second, the ‘Shift-Resample-Shift-Back’ method minimizes the addition of noise due to strong clustered RFI. Empirical studies conducted with simulation of the systems confirm that the proposed methods significantly reduce the impact of RFI on the output of the radio telescope.
期刊介绍:
The Journal of Astronomical Instrumentation (JAI) publishes papers describing instruments and components being proposed, developed, under construction and in use. JAI also publishes papers that describe facility operations, lessons learned in design, construction, and operation, algorithms and their implementations, and techniques, including calibration, that are fundamental elements of instrumentation. The journal focuses on astronomical instrumentation topics in all wavebands (Radio to Gamma-Ray) and includes the disciplines of Heliophysics, Space Weather, Lunar and Planetary Science, Exoplanet Exploration, and Astroparticle Observation (cosmic rays, cosmic neutrinos, etc.). Concepts, designs, components, algorithms, integrated systems, operations, data archiving techniques and lessons learned applicable but not limited to the following platforms are pertinent to this journal. Example topics are listed below each platform, and it is recognized that many of these topics are relevant to multiple platforms. Relevant platforms include: Ground-based observatories[...] Stratospheric aircraft[...] Balloons and suborbital rockets[...] Space-based observatories and systems[...] Landers and rovers, and other planetary-based instrument concepts[...]