Trong Hieu Dam, M. Le, Quoc-Cuong Nguyen, Thanh Tung Nguyen
{"title":"Dual-Band Metamaterial-Based EBG Antenna for Wearable Wireless Devices","authors":"Trong Hieu Dam, M. Le, Quoc-Cuong Nguyen, Thanh Tung Nguyen","doi":"10.1155/2023/2232674","DOIUrl":null,"url":null,"abstract":"In this paper, a wearable dual-band T-shaped antenna using a coplanar waveguide (CPW) fed operating at 2.4 GHz and 5.2 GHz bands is proposed for onbody wireless communications applications. Without the metamaterial-based electromagnetic bandgap (EBG) layer, the original antenna covers two bands from 1.96 GHz to 2.77 GHz and from 5.07 GHz to 5.35 GHz. The antenna efficiency decreases when it is placed on the human arm due to the interference from the human body to the antenna, as shown by a high specific absorption rate (SAR) value. These SAR values are reduced to 77.1% at 2.4 GHz and 91.7% at 5.2 GHz by the proposed EBG. The antenna gain is therefore improved to 1.4 dBi at 2.4 GHz and 6.25 dBi at 5.2 GHz. The antenna prototype is evaluated using a Wi-Fi wearable device, resulting in an improved signal-to-noise ratio (SNR) of 6-12 dB.","PeriodicalId":54944,"journal":{"name":"International Journal of RF and Microwave Computer-Aided Engineering","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of RF and Microwave Computer-Aided Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2023/2232674","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, a wearable dual-band T-shaped antenna using a coplanar waveguide (CPW) fed operating at 2.4 GHz and 5.2 GHz bands is proposed for onbody wireless communications applications. Without the metamaterial-based electromagnetic bandgap (EBG) layer, the original antenna covers two bands from 1.96 GHz to 2.77 GHz and from 5.07 GHz to 5.35 GHz. The antenna efficiency decreases when it is placed on the human arm due to the interference from the human body to the antenna, as shown by a high specific absorption rate (SAR) value. These SAR values are reduced to 77.1% at 2.4 GHz and 91.7% at 5.2 GHz by the proposed EBG. The antenna gain is therefore improved to 1.4 dBi at 2.4 GHz and 6.25 dBi at 5.2 GHz. The antenna prototype is evaluated using a Wi-Fi wearable device, resulting in an improved signal-to-noise ratio (SNR) of 6-12 dB.
期刊介绍:
International Journal of RF and Microwave Computer-Aided Engineering provides a common forum for the dissemination of research and development results in the areas of computer-aided design and engineering of RF, microwave, and millimeter-wave components, circuits, subsystems, and antennas. The journal is intended to be a single source of valuable information for all engineers and technicians, RF/microwave/mm-wave CAD tool vendors, researchers in industry, government and academia, professors and students, and systems engineers involved in RF/microwave/mm-wave technology.
Multidisciplinary in scope, the journal publishes peer-reviewed articles and short papers on topics that include, but are not limited to. . .
-Computer-Aided Modeling
-Computer-Aided Analysis
-Computer-Aided Optimization
-Software and Manufacturing Techniques
-Computer-Aided Measurements
-Measurements Interfaced with CAD Systems
In addition, the scope of the journal includes features such as software reviews, RF/microwave/mm-wave CAD related news, including brief reviews of CAD papers published elsewhere and a "Letters to the Editor" section.