Xinwu Chen, Jingjing Xue, Shuangbo Xie, W. Huang, Peng Wang, Ke Gong, Lijuan Zhong
{"title":"Error Analysis of Approximate Calculation of Voltage Divider Biased Common-Emitter Amplifier","authors":"Xinwu Chen, Jingjing Xue, Shuangbo Xie, W. Huang, Peng Wang, Ke Gong, Lijuan Zhong","doi":"10.4236/CS.2017.810017","DOIUrl":null,"url":null,"abstract":"Voltage divider biasing common emitter amplifier is one of the core contents in analog circuit curriculum, and almost all of traditional textbooks apply approximate calculation method to estimate all characteristic parameters. In calculating quiescent point, transistor base current is generally ignored to get the approximate base potential and emitter current, then other operating parameters, and AC small signal parameters can be acquired. The main purpose of this paper is to compare traditional and Thevenin equivalent methods and to get the difference of the two methods. A Formula is given to calculate the error of the traditional method. Example calculating reveals that the traditional method can generate an error about 10%, and even severe for small signal amplifier with higher quiescent point.","PeriodicalId":63422,"journal":{"name":"电路与系统(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"电路与系统(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/CS.2017.810017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Voltage divider biasing common emitter amplifier is one of the core contents in analog circuit curriculum, and almost all of traditional textbooks apply approximate calculation method to estimate all characteristic parameters. In calculating quiescent point, transistor base current is generally ignored to get the approximate base potential and emitter current, then other operating parameters, and AC small signal parameters can be acquired. The main purpose of this paper is to compare traditional and Thevenin equivalent methods and to get the difference of the two methods. A Formula is given to calculate the error of the traditional method. Example calculating reveals that the traditional method can generate an error about 10%, and even severe for small signal amplifier with higher quiescent point.