{"title":"Nozzle clogging in vacuum induction melting gas atomisation: influence of gas pressure and melt orifice diameter coupling","authors":"Junfeng Wang, Min Xia, Jialun Wu, C. Ge","doi":"10.1080/00325899.2023.2189083","DOIUrl":null,"url":null,"abstract":"ABSTRACT The clogging problem of close-coupled nozzles in the vacuum induction melting gas atomisation (VIGA) process is studied by numerical simulation and industrial experiments. To understand the factors affecting lick back on the nozzle, volume of fluid (VOF) multiphase flow model simulation was adopted to visualise the motion of alloy melt around the outer wall of the delivery tube in the primary atomisation process. When the melt orifice diameter is 4 mm and the atomisation pressure is close to 3.5 MPa, the atomisation process is continuous, the powder particle size is fine, and the atomiser can be reused. When the orifice diameter is 5 mm, and the atomisation pressure is greater than 2.5 MPa, the risk of nozzle clogging is avoided, the powder size is relatively coarse. In the case of using the same atomiser structure, this study explains the mechanism of lick-back and the resulting nozzle damage in VIGA units.","PeriodicalId":20392,"journal":{"name":"Powder Metallurgy","volume":"66 1","pages":"281 - 294"},"PeriodicalIF":1.9000,"publicationDate":"2023-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Metallurgy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/00325899.2023.2189083","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACT The clogging problem of close-coupled nozzles in the vacuum induction melting gas atomisation (VIGA) process is studied by numerical simulation and industrial experiments. To understand the factors affecting lick back on the nozzle, volume of fluid (VOF) multiphase flow model simulation was adopted to visualise the motion of alloy melt around the outer wall of the delivery tube in the primary atomisation process. When the melt orifice diameter is 4 mm and the atomisation pressure is close to 3.5 MPa, the atomisation process is continuous, the powder particle size is fine, and the atomiser can be reused. When the orifice diameter is 5 mm, and the atomisation pressure is greater than 2.5 MPa, the risk of nozzle clogging is avoided, the powder size is relatively coarse. In the case of using the same atomiser structure, this study explains the mechanism of lick-back and the resulting nozzle damage in VIGA units.
期刊介绍:
Powder Metallurgy is an international journal publishing peer-reviewed original research on the science and practice of powder metallurgy and particulate technology. Coverage includes metallic particulate materials, PM tool materials, hard materials, composites, and novel powder based materials.