Xiang You, Mingyang Zheng, Si Chen, Run-Ze Liu, J. Qin, Mo-Chi Xu, Zheng Ge, T. Chung, Yu-Kun Qiao, Yang-Fan Jiang, Han-Sen Zhong, Ming-Cheng Chen, Hui Wang, Yu-Ming He, Xiuping Xie, Hao Li, L. You, C. Schneider, Juan Yin, Teng-Yun Chen, M. Benyoucef, Y. Huo, S. Höfling, Qiang Zhang, Chaoyang Lu, Jian-Wei Pan
{"title":"Quantum interference with independent single-photon sources over 300 km fiber","authors":"Xiang You, Mingyang Zheng, Si Chen, Run-Ze Liu, J. Qin, Mo-Chi Xu, Zheng Ge, T. Chung, Yu-Kun Qiao, Yang-Fan Jiang, Han-Sen Zhong, Ming-Cheng Chen, Hui Wang, Yu-Ming He, Xiuping Xie, Hao Li, L. You, C. Schneider, Juan Yin, Teng-Yun Chen, M. Benyoucef, Y. Huo, S. Höfling, Qiang Zhang, Chaoyang Lu, Jian-Wei Pan","doi":"10.1117/1.AP.4.6.066003","DOIUrl":null,"url":null,"abstract":"Abstract. In the quest to realize a scalable quantum network, semiconductor quantum dots (QDs) offer distinct advantages, including high single-photon efficiency and indistinguishability, high repetition rate (tens of gigahertz with Purcell enhancement), interconnectivity with spin qubits, and a scalable on-chip platform. However, in the past two decades, the visibility of quantum interference between independent QDs rarely went beyond the classical limit of 50%, and the distances were limited from a few meters to kilometers. Here, we report quantum interference between two single photons from independent QDs separated by a 302 km optical fiber. The single photons are generated from resonantly driven single QDs deterministically coupled to microcavities. Quantum frequency conversions are used to eliminate the QD inhomogeneity and shift the emission wavelength to the telecommunication band. The observed interference visibility is 0.67 ± 0.02 (0.93 ± 0.04) without (with) temporal filtering. Feasible improvements can further extend the distance to ∼600 km. Our work represents a key step to long-distance solid-state quantum networks.","PeriodicalId":33241,"journal":{"name":"Advanced Photonics","volume":"4 1","pages":"066003 - 066003"},"PeriodicalIF":20.6000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1117/1.AP.4.6.066003","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 5
Abstract
Abstract. In the quest to realize a scalable quantum network, semiconductor quantum dots (QDs) offer distinct advantages, including high single-photon efficiency and indistinguishability, high repetition rate (tens of gigahertz with Purcell enhancement), interconnectivity with spin qubits, and a scalable on-chip platform. However, in the past two decades, the visibility of quantum interference between independent QDs rarely went beyond the classical limit of 50%, and the distances were limited from a few meters to kilometers. Here, we report quantum interference between two single photons from independent QDs separated by a 302 km optical fiber. The single photons are generated from resonantly driven single QDs deterministically coupled to microcavities. Quantum frequency conversions are used to eliminate the QD inhomogeneity and shift the emission wavelength to the telecommunication band. The observed interference visibility is 0.67 ± 0.02 (0.93 ± 0.04) without (with) temporal filtering. Feasible improvements can further extend the distance to ∼600 km. Our work represents a key step to long-distance solid-state quantum networks.
期刊介绍:
Advanced Photonics is a highly selective, open-access, international journal that publishes innovative research in all areas of optics and photonics, including fundamental and applied research. The journal publishes top-quality original papers, letters, and review articles, reflecting significant advances and breakthroughs in theoretical and experimental research and novel applications with considerable potential.
The journal seeks high-quality, high-impact articles across the entire spectrum of optics, photonics, and related fields with specific emphasis on the following acceptance criteria:
-New concepts in terms of fundamental research with great impact and significance
-State-of-the-art technologies in terms of novel methods for important applications
-Reviews of recent major advances and discoveries and state-of-the-art benchmarking.
The journal also publishes news and commentaries highlighting scientific and technological discoveries, breakthroughs, and achievements in optics, photonics, and related fields.