Quantum interference with independent single-photon sources over 300 km fiber

IF 20.6 1区 物理与天体物理 Q1 OPTICS Advanced Photonics Pub Date : 2022-11-01 DOI:10.1117/1.AP.4.6.066003
Xiang You, Mingyang Zheng, Si Chen, Run-Ze Liu, J. Qin, Mo-Chi Xu, Zheng Ge, T. Chung, Yu-Kun Qiao, Yang-Fan Jiang, Han-Sen Zhong, Ming-Cheng Chen, Hui Wang, Yu-Ming He, Xiuping Xie, Hao Li, L. You, C. Schneider, Juan Yin, Teng-Yun Chen, M. Benyoucef, Y. Huo, S. Höfling, Qiang Zhang, Chaoyang Lu, Jian-Wei Pan
{"title":"Quantum interference with independent single-photon sources over 300 km fiber","authors":"Xiang You, Mingyang Zheng, Si Chen, Run-Ze Liu, J. Qin, Mo-Chi Xu, Zheng Ge, T. Chung, Yu-Kun Qiao, Yang-Fan Jiang, Han-Sen Zhong, Ming-Cheng Chen, Hui Wang, Yu-Ming He, Xiuping Xie, Hao Li, L. You, C. Schneider, Juan Yin, Teng-Yun Chen, M. Benyoucef, Y. Huo, S. Höfling, Qiang Zhang, Chaoyang Lu, Jian-Wei Pan","doi":"10.1117/1.AP.4.6.066003","DOIUrl":null,"url":null,"abstract":"Abstract. In the quest to realize a scalable quantum network, semiconductor quantum dots (QDs) offer distinct advantages, including high single-photon efficiency and indistinguishability, high repetition rate (tens of gigahertz with Purcell enhancement), interconnectivity with spin qubits, and a scalable on-chip platform. However, in the past two decades, the visibility of quantum interference between independent QDs rarely went beyond the classical limit of 50%, and the distances were limited from a few meters to kilometers. Here, we report quantum interference between two single photons from independent QDs separated by a 302 km optical fiber. The single photons are generated from resonantly driven single QDs deterministically coupled to microcavities. Quantum frequency conversions are used to eliminate the QD inhomogeneity and shift the emission wavelength to the telecommunication band. The observed interference visibility is 0.67  ±  0.02 (0.93  ±  0.04) without (with) temporal filtering. Feasible improvements can further extend the distance to ∼600  km. Our work represents a key step to long-distance solid-state quantum networks.","PeriodicalId":33241,"journal":{"name":"Advanced Photonics","volume":"4 1","pages":"066003 - 066003"},"PeriodicalIF":20.6000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1117/1.AP.4.6.066003","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 5

Abstract

Abstract. In the quest to realize a scalable quantum network, semiconductor quantum dots (QDs) offer distinct advantages, including high single-photon efficiency and indistinguishability, high repetition rate (tens of gigahertz with Purcell enhancement), interconnectivity with spin qubits, and a scalable on-chip platform. However, in the past two decades, the visibility of quantum interference between independent QDs rarely went beyond the classical limit of 50%, and the distances were limited from a few meters to kilometers. Here, we report quantum interference between two single photons from independent QDs separated by a 302 km optical fiber. The single photons are generated from resonantly driven single QDs deterministically coupled to microcavities. Quantum frequency conversions are used to eliminate the QD inhomogeneity and shift the emission wavelength to the telecommunication band. The observed interference visibility is 0.67  ±  0.02 (0.93  ±  0.04) without (with) temporal filtering. Feasible improvements can further extend the distance to ∼600  km. Our work represents a key step to long-distance solid-state quantum networks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
300公里光纤中独立单光子源的量子干涉
摘要在寻求实现可扩展量子网络的过程中,半导体量子点(QDs)提供了独特的优势,包括高单光子效率和不可区分性、高重复率(Purcell增强后为数十吉赫兹)、与自旋量子位的互连性以及可扩展的片上平台。然而,在过去的二十年里,独立量子点之间量子干涉的可见性很少超过50%的经典极限,距离也被限制在几米到几公里之间。在这里,我们报道了由302公里光纤分离的独立量子点的两个单光子之间的量子干涉。单光子是由确定耦合到微腔的共振驱动的单量子点产生的。量子频率转换用于消除QD不均匀性并将发射波长转移到电信频带。观测到的干扰能见度为0.67  ±  0.02(0.93  ±  0.04),而没有(具有)时间滤波。可行的改进可以将距离进一步延长至~600  我们的工作代表着向长距离固态量子网络迈出了关键一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
22.70
自引率
1.20%
发文量
49
审稿时长
18 weeks
期刊介绍: Advanced Photonics is a highly selective, open-access, international journal that publishes innovative research in all areas of optics and photonics, including fundamental and applied research. The journal publishes top-quality original papers, letters, and review articles, reflecting significant advances and breakthroughs in theoretical and experimental research and novel applications with considerable potential. The journal seeks high-quality, high-impact articles across the entire spectrum of optics, photonics, and related fields with specific emphasis on the following acceptance criteria: -New concepts in terms of fundamental research with great impact and significance -State-of-the-art technologies in terms of novel methods for important applications -Reviews of recent major advances and discoveries and state-of-the-art benchmarking. The journal also publishes news and commentaries highlighting scientific and technological discoveries, breakthroughs, and achievements in optics, photonics, and related fields.
期刊最新文献
Organic near-infrared optoelectronic materials and devices: an overview Giant photoinduced reflectivity modulation of nonlocal resonances in silicon metasurfaces Quantum dots for optoelectronics Surfing the metasurface: a conversation with Din Ping Tsai Nonlinear chiral metaphotonics: a perspective
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1