Leakage Power Canceling Module with a Negative Capacitor for a Circulator’s Isolation

IF 1.6 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of electromagnetic engineering and science Pub Date : 2023-03-31 DOI:10.26866/jees.2023.2.r.151
T.‐B. Ngo, Quang-Huy Do, Sang‐Woong Yoon
{"title":"Leakage Power Canceling Module with a Negative Capacitor for a Circulator’s Isolation","authors":"T.‐B. Ngo, Quang-Huy Do, Sang‐Woong Yoon","doi":"10.26866/jees.2023.2.r.151","DOIUrl":null,"url":null,"abstract":"In this study, we developed a leakage power canceling module (LPCM) incorporating a negative capacitor (NCAP). The NCAP provided the circulator with a wide bandwidth, rendering it suitable for retrodirective short-range wireless power transfer applications. The proposed LPCM consisted of a directional coupler, a hybrid coupler, and a low-pass filter network with an NCAP that exhibited the frequency response required to realize leakage power cancellation from the transmitter output to the receiver input. The two couplers were fabricated in an FR4 printed circuit board, and the NCAP was implemented using Samsung LR6LP 65 nm RF CMOS IC technology. The NCAP chip provided a capacitance of -2 pF and consumed a DC voltage and current of 3 V and 13 mA, respectively. The size of the fabricated LPCM was 41 mm × 37 mm. The application of the proposed LPCM was demonstrated with a commercial circulator. The S-parameter measurements indicated that the leakage cancellation was 20‒46 dB at a frequency range of 2.29–2.515 GHz. The bandwidth was defined considering a leakage cancellation of more than 20 dB, and the actual and fractional bandwidths were 222 MHz and 9.25%, respectively.","PeriodicalId":15662,"journal":{"name":"Journal of electromagnetic engineering and science","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of electromagnetic engineering and science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.26866/jees.2023.2.r.151","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we developed a leakage power canceling module (LPCM) incorporating a negative capacitor (NCAP). The NCAP provided the circulator with a wide bandwidth, rendering it suitable for retrodirective short-range wireless power transfer applications. The proposed LPCM consisted of a directional coupler, a hybrid coupler, and a low-pass filter network with an NCAP that exhibited the frequency response required to realize leakage power cancellation from the transmitter output to the receiver input. The two couplers were fabricated in an FR4 printed circuit board, and the NCAP was implemented using Samsung LR6LP 65 nm RF CMOS IC technology. The NCAP chip provided a capacitance of -2 pF and consumed a DC voltage and current of 3 V and 13 mA, respectively. The size of the fabricated LPCM was 41 mm × 37 mm. The application of the proposed LPCM was demonstrated with a commercial circulator. The S-parameter measurements indicated that the leakage cancellation was 20‒46 dB at a frequency range of 2.29–2.515 GHz. The bandwidth was defined considering a leakage cancellation of more than 20 dB, and the actual and fractional bandwidths were 222 MHz and 9.25%, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
带负电容的漏功率消除模块,用于环行器的隔离
在这项研究中,我们开发了一个包含负电容器(NCAP)的泄漏功率消除模块(LPCM)。NCAP为循环器提供了宽带宽,使其适用于反向短程无线功率传输应用。所提出的LPCM由定向耦合器、混合耦合器和具有NCAP的低通滤波器网络组成,NCAP表现出实现从发射机输出到接收机输入的泄漏功率消除所需的频率响应。两个耦合器在FR4印刷电路板上制造,NCAP使用三星LR6LP 65nm RF CMOS IC技术实现。NCAP芯片提供了-2pF的电容,并分别消耗了3V和13mA的直流电压和电流。制作的LPCM尺寸为41mm×37mm。用商用循环器演示了所提出的LPCM的应用。S参数测量表明,在2.29–2.515 GHz的频率范围内,泄漏消除为20-46 dB。带宽是在考虑超过20dB的泄漏消除的情况下定义的,实际带宽和分数带宽分别为222MHz和9.25%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of electromagnetic engineering and science
Journal of electromagnetic engineering and science ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
2.90
自引率
17.40%
发文量
82
审稿时长
10 weeks
期刊介绍: The Journal of Electromagnetic Engineering and Science (JEES) is an official English-language journal of the Korean Institute of Electromagnetic and Science (KIEES). This journal was launched in 2001 and has been published quarterly since 2003. It is currently registered with the National Research Foundation of Korea and also indexed in Scopus, CrossRef and EBSCO, DOI/Crossref, Google Scholar and Web of Science Core Collection as Emerging Sources Citation Index(ESCI) Journal. The objective of JEES is to publish academic as well as industrial research results and discoveries in electromagnetic engineering and science. The particular scope of the journal includes electromagnetic field theory and its applications: High frequency components, circuits, and systems, Antennas, smart phones, and radars, Electromagnetic wave environments, Relevant industrial developments.
期刊最新文献
Efficient FDTD Simulation for the EM Analysis of Faraday Rotation in the Ionosphere Experimental Results of Magnetic Communication Using the Giant Magnetoimpedance Receiver in Underwater Environments A Separation Method for Electromagnetic Radiation Sources of the Same Frequency Investigation of Pulse Characteristics of a Novel Cylindrically Slotted Cloaked Antenna Time-Domain Measurement Data Accumulation for Slow Moving Point Target Detection in Heavily Cluttered Environments Using CNN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1