Effect of Ultrasonication on Membrane Structure and Flux Recovery for Whey Ultrafiltration

Shabnam Azami, M. Amirinejad
{"title":"Effect of Ultrasonication on Membrane Structure and Flux Recovery for Whey Ultrafiltration","authors":"Shabnam Azami, M. Amirinejad","doi":"10.22079/JMSR.2019.96835.1225","DOIUrl":null,"url":null,"abstract":"In this study, the effect of ultrasound irradiation on the flux recovery and fouling mitigation for the membranes made of the polysulfone by the phase inversion method were investigated. Two ultrasound irradiation regimes, including inside and outside the module, were chosen for this study. The experiments were conducted to investigate the effect of ultrasound irradiation on the membrane structure and cleaning. The ultrasound was irradiated in the frequency of 20 kHz and at the intensity of 25.5-127.4 W/cm2. When the membranes were irradiated directly out of the module, they may be damaged and the large holes were formed due to remaining in direct acoustic cavitation area. The flux recovery for the whey ultrafiltration process was increased with the increase of the irradiation time and the ultrasound intensity. The released energy which is the result of the cavitation threshold of bubbles indirectly may clean the foulant. During 60 min ultrasound irradiation, the flux recoveries were between 83-91% for membranes. At the probe distance of 1 cm from the module and after 20 min, the destruction or cracks in the membrane may be happened. The FE-SEM showed that the adjacent holes were connected and the crack was formed. The results for using the ultrasound for cleaning the fouled membranes showed that in the long distances, a large number of cavitation bubbles collapses before they reach to the membrane and in short distance, due to higher energy density, the produced acoustic and turbulence stream are increased and the membrane may be damaged.","PeriodicalId":16427,"journal":{"name":"Journal of Membrane Science and Research","volume":"5 1","pages":"261-267"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science and Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22079/JMSR.2019.96835.1225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 3

Abstract

In this study, the effect of ultrasound irradiation on the flux recovery and fouling mitigation for the membranes made of the polysulfone by the phase inversion method were investigated. Two ultrasound irradiation regimes, including inside and outside the module, were chosen for this study. The experiments were conducted to investigate the effect of ultrasound irradiation on the membrane structure and cleaning. The ultrasound was irradiated in the frequency of 20 kHz and at the intensity of 25.5-127.4 W/cm2. When the membranes were irradiated directly out of the module, they may be damaged and the large holes were formed due to remaining in direct acoustic cavitation area. The flux recovery for the whey ultrafiltration process was increased with the increase of the irradiation time and the ultrasound intensity. The released energy which is the result of the cavitation threshold of bubbles indirectly may clean the foulant. During 60 min ultrasound irradiation, the flux recoveries were between 83-91% for membranes. At the probe distance of 1 cm from the module and after 20 min, the destruction or cracks in the membrane may be happened. The FE-SEM showed that the adjacent holes were connected and the crack was formed. The results for using the ultrasound for cleaning the fouled membranes showed that in the long distances, a large number of cavitation bubbles collapses before they reach to the membrane and in short distance, due to higher energy density, the produced acoustic and turbulence stream are increased and the membrane may be damaged.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超声对乳清超滤膜结构及通量回收的影响
在本研究中,研究了超声辐照对相反转法制备的聚砜膜通量回收和污垢缓解的影响。本研究选择了两种超声照射方案,包括模块内部和外部。实验研究了超声辐照对膜结构和清洗的影响。超声波以20kHz的频率和25.5-127.4W/cm2的强度照射。当膜被直接辐射出模块时,它们可能会被损坏,并且由于保留在直接声空化区域中而形成大孔。乳清超滤过程的通量回收率随着辐照时间和超声强度的增加而增加。作为气泡空化阈值的结果的释放能量可以间接地清洁污垢。在60分钟的超声辐照期间,膜的通量回收率在83-91%之间。在探针距离模块1cm处,20分钟后,膜可能发生破坏或裂纹。FE-SEM显示相邻的孔是连接的并且形成了裂纹。使用超声波清洗污染膜的结果表明,在长距离内,大量空化气泡在到达膜之前就会坍塌;在短距离内,由于能量密度较高,产生的声学和湍流增加,膜可能会损坏。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Membrane Science and Research
Journal of Membrane Science and Research Materials Science-Materials Science (miscellaneous)
CiteScore
4.00
自引率
0.00%
发文量
1
审稿时长
8 weeks
期刊介绍: The Journal of Membrane Science and Research (JMSR) is an Open Access journal with Free of Charge publication policy, which provides a focal point for academic and industrial chemical and polymer engineers, chemists, materials scientists, and membranologists working on both membranes and membrane processes, particularly for four major sectors, including Energy, Water, Environment and Food. The journal publishes original research and reviews on membranes (organic, inorganic, liquid and etc.) and membrane processes (MF, UF, NF, RO, ED, Dialysis, MD, PV, CDI, FO, GP, VP and etc.), membrane formation/structure/performance, fouling, module/process design, and processes/applications in various areas. Primary emphasis is on structure, function, and performance of essentially non-biological membranes.
期刊最新文献
Matrimid®5218/AO-PIM-1 Blend Membranes for Gas Separation Thin film nanocomposite (TFN) membrane comprising Pebax®1657 and porous organic polymers (POP) for favored CO2 separation New challenges and applications of supported liquid membrane systems based on facilitated transport in liquid phase separations of metallic species Effect of multi-staging in vacuum membrane distillation on productivity and temperature polarization Gas permselectivity of hyperbranched polybenzoxazole – silica hybrid membranes treated at different thermal protocols
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1