Adsorption of ionomer and ionic liquid on model Pt catalysts for polymer electrolyte fuel cells

IF 2.9 Q2 ELECTROCHEMISTRY Electrochemical science advances Pub Date : 2022-03-28 DOI:10.1002/elsa.202100183
Kensaku Kodama, Kenta Motobayashi
{"title":"Adsorption of ionomer and ionic liquid on model Pt catalysts for polymer electrolyte fuel cells","authors":"Kensaku Kodama,&nbsp;Kenta Motobayashi","doi":"10.1002/elsa.202100183","DOIUrl":null,"url":null,"abstract":"<p>The adsorption of the perfluoro-sulfonic acid polymer of Nafion and ionic liquid (IL) of 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide on the surface of Pt was investigated via voltammetric analyses, using stepped Pt single-crystal electrodes with (111) terraces and (110) steps, and surface-enhanced infrared absorption spectroscopy (SEIRAS) analyses using a Pt polycrystalline electrode. Sulfonate anion in Nafion was adsorbed on the stepped Pt single-crystal electrodes and suppressed the oxygen reduction reaction (ORR) activity by more than 50%, regardless of the terrace width. The IL molecules were preferentially adsorbed on the step sites through a simple IL coating procedure. The SEIRAS analysis indicated that the IL molecules were stable on the Pt surface throughout potential cycles, where the anionic moieties were in contact with the Pt surface and reoriented depending on the potential. The IL modification prior to Nafion coating mitigated ionomer adsorption on the Pt surface. However, the mitigation effect was not reflected in the ORR activity because water production led to IL desorption during the ORR activity measurement. Accordingly, IL modification is a promising method for improving the performance of Pt catalysts in polymer electrolyte fuel cells; however, further studies to prevent the leaching of IL are required for practical applications of this approach.</p>","PeriodicalId":93746,"journal":{"name":"Electrochemical science advances","volume":"3 4","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2022-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elsa.202100183","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochemical science advances","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/elsa.202100183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 4

Abstract

The adsorption of the perfluoro-sulfonic acid polymer of Nafion and ionic liquid (IL) of 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide on the surface of Pt was investigated via voltammetric analyses, using stepped Pt single-crystal electrodes with (111) terraces and (110) steps, and surface-enhanced infrared absorption spectroscopy (SEIRAS) analyses using a Pt polycrystalline electrode. Sulfonate anion in Nafion was adsorbed on the stepped Pt single-crystal electrodes and suppressed the oxygen reduction reaction (ORR) activity by more than 50%, regardless of the terrace width. The IL molecules were preferentially adsorbed on the step sites through a simple IL coating procedure. The SEIRAS analysis indicated that the IL molecules were stable on the Pt surface throughout potential cycles, where the anionic moieties were in contact with the Pt surface and reoriented depending on the potential. The IL modification prior to Nafion coating mitigated ionomer adsorption on the Pt surface. However, the mitigation effect was not reflected in the ORR activity because water production led to IL desorption during the ORR activity measurement. Accordingly, IL modification is a promising method for improving the performance of Pt catalysts in polymer electrolyte fuel cells; however, further studies to prevent the leaching of IL are required for practical applications of this approach.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
聚合物电解质燃料电池模型Pt催化剂对离子液体和离聚体的吸附
采用伏安法、(111)阶和(110)阶阶梯Pt单晶电极和表面增强红外吸收光谱(SEIRAS)分析了Nafion全氟磺酸聚合物和1-丁基-3-甲基咪唑双(三氟甲烷磺酰)亚胺离子液体(IL)在Pt表面的吸附。Nafion中的磺酸阴离子吸附在阶梯Pt单晶电极上,与台阶宽度无关,可抑制氧还原反应活性(ORR) 50%以上。通过简单的IL包覆过程,将IL分子优先吸附在台阶上。SEIRAS分析表明,在整个电位循环中,IL分子在Pt表面是稳定的,其中阴离子部分与Pt表面接触并根据电位重新定向。涂层前的IL修饰减轻了离子单体在Pt表面的吸附。然而,由于在ORR活度测量期间产水导致了IL的解吸,因此减缓效果并未反映在ORR活度中。因此,IL改性是提高聚合物电解质燃料电池中Pt催化剂性能的一种很有前途的方法;然而,该方法的实际应用还需要进一步的研究来防止IL的浸出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.80
自引率
0.00%
发文量
0
审稿时长
10 weeks
期刊最新文献
Electrochemical Contributions: Svante August Arrhenius (1859–1927) Cover Picture Electrochemical contributions: Tatyana Aleksandrovna Kryukova (1906–1987) Electrochemical contributions: Ludwig Mond (1839−1909) Electrochemical contributions: John Alfred Valentine Butler (1899–1977)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1