{"title":"Experimental Study On Gravity-effect for Startup Performance of High-Temperature Sodium Heat Pipe","authors":"Zhi Hu XUE, Bang Cheng AI, Wei QU","doi":"10.1007/s12217-023-10056-x","DOIUrl":null,"url":null,"abstract":"<div><p>The gravity-effect plays important factor on the startup and thermal performance of high-temperature heat pipes (HTHPs). But the results of past studies are quite different and confusing our perception. In this paper, a sodium HTHP is fabricated and experimented to study the gravity-assisted, horizontal and anti-gravity three modes on the startup behaviors and quasi-steady thermal performance. The HTHP is designed to Φ25 × 410 mm, two wraps of 100 mesh screen, and filling mass of 15 g sodium. The HTHP is tested at the inclination angle of 0°, 90°, -30° and -90°. The results show that no startup failures are found during all the three operating modes and the startup time for HTHP fully starting at different inclination angle is the same as 10 min. However, the gravity-effect cannot be ignored and plays important influence on the HTHP startup. Compared with the horizontal mode, the gravity-assisted mode (90°) is beneficial for the starting more favorably and decreasing the temperature difference between the evaporator and condenser after the startup. The anti-gravity working mode has a significant adverse effect on the temperature rise-rate of the HTHP condenser and increase the temperature difference after the startup in a large step as the inclination angle changed from 0°, -30° to -90°.\n</p></div>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12217-023-10056-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microgravity Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12217-023-10056-x","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
The gravity-effect plays important factor on the startup and thermal performance of high-temperature heat pipes (HTHPs). But the results of past studies are quite different and confusing our perception. In this paper, a sodium HTHP is fabricated and experimented to study the gravity-assisted, horizontal and anti-gravity three modes on the startup behaviors and quasi-steady thermal performance. The HTHP is designed to Φ25 × 410 mm, two wraps of 100 mesh screen, and filling mass of 15 g sodium. The HTHP is tested at the inclination angle of 0°, 90°, -30° and -90°. The results show that no startup failures are found during all the three operating modes and the startup time for HTHP fully starting at different inclination angle is the same as 10 min. However, the gravity-effect cannot be ignored and plays important influence on the HTHP startup. Compared with the horizontal mode, the gravity-assisted mode (90°) is beneficial for the starting more favorably and decreasing the temperature difference between the evaporator and condenser after the startup. The anti-gravity working mode has a significant adverse effect on the temperature rise-rate of the HTHP condenser and increase the temperature difference after the startup in a large step as the inclination angle changed from 0°, -30° to -90°.
期刊介绍:
Microgravity Science and Technology – An International Journal for Microgravity and Space Exploration Related Research is a is a peer-reviewed scientific journal concerned with all topics, experimental as well as theoretical, related to research carried out under conditions of altered gravity.
Microgravity Science and Technology publishes papers dealing with studies performed on and prepared for platforms that provide real microgravity conditions (such as drop towers, parabolic flights, sounding rockets, reentry capsules and orbiting platforms), and on ground-based facilities aiming to simulate microgravity conditions on earth (such as levitrons, clinostats, random positioning machines, bed rest facilities, and micro-scale or neutral buoyancy facilities) or providing artificial gravity conditions (such as centrifuges).
Data from preparatory tests, hardware and instrumentation developments, lessons learnt as well as theoretical gravity-related considerations are welcome. Included science disciplines with gravity-related topics are:
− materials science
− fluid mechanics
− process engineering
− physics
− chemistry
− heat and mass transfer
− gravitational biology
− radiation biology
− exobiology and astrobiology
− human physiology