Syntheses, crystal structure, thermal behavior, and anti-tumor activity of three ternary metal complexes with 2-chloro-5-nitrobenzoic acid and heterocyclic compounds

IF 1.3 3区 化学 Q3 CHEMISTRY, ORGANIC Heterocyclic Communications Pub Date : 2022-01-01 DOI:10.1515/hc-2022-0011
Zhongyu Zhang, Meng Chen, M. Tong, Wan Sun, P. Dong, Xinfeng Song, Xiaoyue Wang
{"title":"Syntheses, crystal structure, thermal behavior, and anti-tumor activity of three ternary metal complexes with 2-chloro-5-nitrobenzoic acid and heterocyclic compounds","authors":"Zhongyu Zhang, Meng Chen, M. Tong, Wan Sun, P. Dong, Xinfeng Song, Xiaoyue Wang","doi":"10.1515/hc-2022-0011","DOIUrl":null,"url":null,"abstract":"Abstract Three complexes, namely complex (1), complex (2), and complex (3), were synthesized and characterized by X-ray diffraction, thermogravimetric study, and elemental study. Complex (1) comprises discrete binuclear clusters, where two oxygen atoms of 2-chloro-5-nitrobenzoic acid bridge the two copper atoms. Complex (2) is a six-coordination structure consisting of four nitrogen atoms and two oxygen atoms in 2-chloro-5-nitrobenzoic acid and 1,10-phenanthroline to furnish a twisted octahedron. Complex (3) is a six-coordination structure consisting of four oxygen atoms and two nitrogen atoms from the 2-chloro-5-nitrobenzoic acid, methanol, and 2,2′-dipyridyl to furnish a distorted octahedral geometry. Metal complexes’ anti-tumor activity was also investigated by the MTT assay. Of the complexes tested, complex (1) could induce apoptosis in these A549 lung cancer and Caco-2 colon adenocarcinoma cells and complex (2) could induce apoptosis in Caco-2 colon adenocarcinoma cells. CCDC for complex (1) was 1543354, CCDC for complex (2) was 1546991, and CCDC for complex (3) was 1543417.","PeriodicalId":12914,"journal":{"name":"Heterocyclic Communications","volume":"28 1","pages":"84 - 94"},"PeriodicalIF":1.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heterocyclic Communications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1515/hc-2022-0011","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract Three complexes, namely complex (1), complex (2), and complex (3), were synthesized and characterized by X-ray diffraction, thermogravimetric study, and elemental study. Complex (1) comprises discrete binuclear clusters, where two oxygen atoms of 2-chloro-5-nitrobenzoic acid bridge the two copper atoms. Complex (2) is a six-coordination structure consisting of four nitrogen atoms and two oxygen atoms in 2-chloro-5-nitrobenzoic acid and 1,10-phenanthroline to furnish a twisted octahedron. Complex (3) is a six-coordination structure consisting of four oxygen atoms and two nitrogen atoms from the 2-chloro-5-nitrobenzoic acid, methanol, and 2,2′-dipyridyl to furnish a distorted octahedral geometry. Metal complexes’ anti-tumor activity was also investigated by the MTT assay. Of the complexes tested, complex (1) could induce apoptosis in these A549 lung cancer and Caco-2 colon adenocarcinoma cells and complex (2) could induce apoptosis in Caco-2 colon adenocarcinoma cells. CCDC for complex (1) was 1543354, CCDC for complex (2) was 1546991, and CCDC for complex (3) was 1543417.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
2-氯-5-硝基苯甲酸及杂环化合物三元金属配合物的合成、晶体结构、热行为及抗肿瘤活性
摘要合成了三种配合物,即配合物(1)、配合物(2)和配合物(3),并通过X射线衍射、热重分析和元素分析对其进行了表征。络合物(1)包括离散的双核簇,其中2-氯-5-硝基苯甲酸的两个氧原子桥接两个铜原子。配合物(2)是由2-氯-5-硝基苯甲酸和1,10-菲罗啉中的四个氮原子和两个氧原子组成的六配位结构,形成扭曲的八面体。配合物(3)是一种六配位结构,由2-氯-5-硝基苯甲酸、甲醇和2,2′-联吡啶的四个氧原子和两个氮原子组成,形成扭曲的八面体几何结构。MTT法检测金属配合物的抗肿瘤活性。在测试的复合物中,复合物(1)可诱导这些A549肺癌癌症和Caco-2结肠癌细胞的凋亡,复合物可诱导Caco-2结肠腺癌细胞的凋亡。复合体(1)的CCDC为1543354,复合体(2)的CCDC1546991,复合体(3)的CCCCDC1543417。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Heterocyclic Communications
Heterocyclic Communications 化学-有机化学
CiteScore
3.80
自引率
4.30%
发文量
13
审稿时长
1.4 months
期刊介绍: Heterocyclic Communications (HC) is a bimonthly, peer-reviewed journal publishing preliminary communications, research articles, and reviews on significant developments in all phases of heterocyclic chemistry, including general synthesis, natural products, computational analysis, considerable biological activity and inorganic ring systems. Clear presentation of experimental and computational data is strongly emphasized. Heterocyclic chemistry is a rapidly growing field. By some estimates original research papers in heterocyclic chemistry have increased to more than 60% of the current organic chemistry literature published. This explosive growth is even greater when considering heterocyclic research published in materials science, physical, biophysical, analytical, bioorganic, pharmaceutical, medicinal and natural products journals. There is a need, therefore, for a journal dedicated explicitly to heterocyclic chemistry and the properties of heterocyclic compounds.
期刊最新文献
Synthesis, characterization, and antibacterial activity of a new poly azo compound containing N-arylsuccinimid and dibenzobarrelene moieties Design, synthesis, and antiviral activities evaluation of novel quinazoline derivatives containing sulfonamide moiety Influence of octreotide on apoptosis and metabolome expression in lipopolysaccharide-induced A549 cells Preparation of novel acyl pyrazoles and triazoles by means of oxidative functionalization reactions Synthesis and conformational analysis of N-BOC-protected-3,5-bis(arylidene)-4-piperidone EF-24 analogs as anti-cancer agents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1