B. Chen, Yuhua Luo, Yu Zhang, Tao Jia, Hui-Ping Chen, Jianya Gong, Qingquan Li
{"title":"Efficient and scalable DBSCAN framework for clustering continuous trajectories in road networks","authors":"B. Chen, Yuhua Luo, Yu Zhang, Tao Jia, Hui-Ping Chen, Jianya Gong, Qingquan Li","doi":"10.1080/13658816.2023.2217443","DOIUrl":null,"url":null,"abstract":"Abstract Clustering the trajectories of vehicles moving on road networks is a key data mining technique for understanding human mobility patterns, as well as their interactions with urban environments. The development of efficient and scalable trajectory clustering algorithms, however, still faces challenges because of the computational costs when measuring similarities among a large number of network-constrained trajectories. To address this problem, a novel trajectory clustering framework based on the well-developed Density-Based Spatial Clustering of Applications with Noise (DBSCAN) approach is proposed. This proposed framework accurately quantifies similarities using a trajectory representation of continuous polylines in the space and time dimensions, and does not require trajectory discretization. Further, the proposed framework utilizes the space-time buffering concept to formulate -neighborhood queries that directly retrieve the -neighbors of trajectories and thus avoids computing a trajectory similarity matrix. State-of-the-art trajectory databases and index structures are incorporated to further improve trajectory clustering performance. A comprehensive case study was carried out using an open dataset of 20,161 trajectories. Results show that the proposed framework efficiently executed trajectory clustering on the large test dataset within 3 min. This was approximately 2,700 times faster than existing DBSCAN algorithms.","PeriodicalId":14162,"journal":{"name":"International Journal of Geographical Information Science","volume":"37 1","pages":"1693 - 1727"},"PeriodicalIF":4.3000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Geographical Information Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/13658816.2023.2217443","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Clustering the trajectories of vehicles moving on road networks is a key data mining technique for understanding human mobility patterns, as well as their interactions with urban environments. The development of efficient and scalable trajectory clustering algorithms, however, still faces challenges because of the computational costs when measuring similarities among a large number of network-constrained trajectories. To address this problem, a novel trajectory clustering framework based on the well-developed Density-Based Spatial Clustering of Applications with Noise (DBSCAN) approach is proposed. This proposed framework accurately quantifies similarities using a trajectory representation of continuous polylines in the space and time dimensions, and does not require trajectory discretization. Further, the proposed framework utilizes the space-time buffering concept to formulate -neighborhood queries that directly retrieve the -neighbors of trajectories and thus avoids computing a trajectory similarity matrix. State-of-the-art trajectory databases and index structures are incorporated to further improve trajectory clustering performance. A comprehensive case study was carried out using an open dataset of 20,161 trajectories. Results show that the proposed framework efficiently executed trajectory clustering on the large test dataset within 3 min. This was approximately 2,700 times faster than existing DBSCAN algorithms.
期刊介绍:
International Journal of Geographical Information Science provides a forum for the exchange of original ideas, approaches, methods and experiences in the rapidly growing field of geographical information science (GIScience). It is intended to interest those who research fundamental and computational issues of geographic information, as well as issues related to the design, implementation and use of geographical information for monitoring, prediction and decision making. Published research covers innovations in GIScience and novel applications of GIScience in natural resources, social systems and the built environment, as well as relevant developments in computer science, cartography, surveying, geography and engineering in both developed and developing countries.