{"title":"Review on Heat and Fluid Flow in Micro Pin Fin Heat Sinks under Single-phase and Two-phase Flow Conditions","authors":"A. Mohammadi, A. Koşar","doi":"10.1080/15567265.2018.1475525","DOIUrl":null,"url":null,"abstract":"ABSTRACT This article reviews recent studies on the hydrodynamic and thermal characteristics of micro pin fin heat sink (MPFHS). In the studies reviewed in this article, liquid coolants such as water, HFE-7000, HFE-7200, R-123 were tested under both single-phase and two-phase flow conditions. Analytical, computational and experimental research studies were covered with a focus on configurations with traditional arrangements of micro pin fins (MPF) as well as original designs such as oblique finned MPFs, variable density MPF, vortex generators and herringbone structures. Single-phase flow results highlighted pressure drop penalty with achieved heat transfer enhancement. Many studies revealed the inability of conventional correlations to predict the hydrodynamic and thermal characteristics and proposed new correlations for different operating conditions and geometrical specifications. Regarding the studies on two-phase flows the number of performed studies is less than the ones in single-phase flow regime although the diversity of utilized coolants is more. Under flow boiling conditions, the focus was on determining flow patterns among MPFs for different arrangements and under different operating conditions. Unlike the studies on single-phase flows, the data could be relatively well predicted using the earlier suggested model by Lockhart and Martinelli with appropriate coefficients for different arrangements of MPFs.","PeriodicalId":49784,"journal":{"name":"Nanoscale and Microscale Thermophysical Engineering","volume":"22 1","pages":"153 - 197"},"PeriodicalIF":2.7000,"publicationDate":"2018-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15567265.2018.1475525","citationCount":"49","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale and Microscale Thermophysical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/15567265.2018.1475525","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 49
Abstract
ABSTRACT This article reviews recent studies on the hydrodynamic and thermal characteristics of micro pin fin heat sink (MPFHS). In the studies reviewed in this article, liquid coolants such as water, HFE-7000, HFE-7200, R-123 were tested under both single-phase and two-phase flow conditions. Analytical, computational and experimental research studies were covered with a focus on configurations with traditional arrangements of micro pin fins (MPF) as well as original designs such as oblique finned MPFs, variable density MPF, vortex generators and herringbone structures. Single-phase flow results highlighted pressure drop penalty with achieved heat transfer enhancement. Many studies revealed the inability of conventional correlations to predict the hydrodynamic and thermal characteristics and proposed new correlations for different operating conditions and geometrical specifications. Regarding the studies on two-phase flows the number of performed studies is less than the ones in single-phase flow regime although the diversity of utilized coolants is more. Under flow boiling conditions, the focus was on determining flow patterns among MPFs for different arrangements and under different operating conditions. Unlike the studies on single-phase flows, the data could be relatively well predicted using the earlier suggested model by Lockhart and Martinelli with appropriate coefficients for different arrangements of MPFs.
期刊介绍:
Nanoscale and Microscale Thermophysical Engineering is a journal covering the basic science and engineering of nanoscale and microscale energy and mass transport, conversion, and storage processes. In addition, the journal addresses the uses of these principles for device and system applications in the fields of energy, environment, information, medicine, and transportation.
The journal publishes both original research articles and reviews of historical accounts, latest progresses, and future directions in this rapidly advancing field. Papers deal with such topics as:
transport and interactions of electrons, phonons, photons, and spins in solids,
interfacial energy transport and phase change processes,
microscale and nanoscale fluid and mass transport and chemical reaction,
molecular-level energy transport, storage, conversion, reaction, and phase transition,
near field thermal radiation and plasmonic effects,
ultrafast and high spatial resolution measurements,
multi length and time scale modeling and computations,
processing of nanostructured materials, including composites,
micro and nanoscale manufacturing,
energy conversion and storage devices and systems,
thermal management devices and systems,
microfluidic and nanofluidic devices and systems,
molecular analysis devices and systems.