M. Jafari, Ehsan Masoudi, N. Sotoudeh, S. F. Hosseini
{"title":"Effects of Heat and WiFi (2.4 GHz) Exposure on Rat Cardiovascular System","authors":"M. Jafari, Ehsan Masoudi, N. Sotoudeh, S. F. Hosseini","doi":"10.5812/jhealthscope-120282","DOIUrl":null,"url":null,"abstract":"Background: Today, wireless communication systems are destructive with increased lipid peroxidation and oxidation state and have adverse biological effects on human health. Objectives: In this study, we examined the effects of exposure to WiFi wireless frequency (2.4 GHz) on histopathological changes in the cardiovascular system of rats. Methods: The experimental groups included 32 adult male rats divided into control (not exposed to heat and WiFi), WiFi (exposed to 2.45 GHz for 52 consecutive days (2 h/day)), heat (water bath of 43°C for 52 consecutive days (10 min/day)), and heat+WiFi groups (exposed to 2.45 GHz then water bath of 43°C). On the 52nd day, the heart was removed, and its total volume and weight were determined using stereological techniques. The number of cardiomyocytes nuclei and the volume of the myocardium were determined. Blood samples were collected to measure reduced glutathione (GSH) content, Total Antioxidant Capacity (TAC), and malondialdehyde level (MDA). Data were analyzed by ANOVA, Kruskal-Wallis, and Mann-Whitney U tests. Results: The heart weight and volume density of the myocardium increased in the WiFi-irradiated group compared to the control group (P < 0.05). Also, exposure to WiFi increased MDA levels and decreased TAC and GSH compared to the control group (P < 0.05). Conclusions: This study indicated that RFW might cause structural changes and oxidative stress in the heart. Also, exposure to radiofrequency decreased total antioxidant activity in heart tissue with histological changes, including myocardium hypertrophy and decreased number of myocytes.","PeriodicalId":12857,"journal":{"name":"Health Scope","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Scope","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5812/jhealthscope-120282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Today, wireless communication systems are destructive with increased lipid peroxidation and oxidation state and have adverse biological effects on human health. Objectives: In this study, we examined the effects of exposure to WiFi wireless frequency (2.4 GHz) on histopathological changes in the cardiovascular system of rats. Methods: The experimental groups included 32 adult male rats divided into control (not exposed to heat and WiFi), WiFi (exposed to 2.45 GHz for 52 consecutive days (2 h/day)), heat (water bath of 43°C for 52 consecutive days (10 min/day)), and heat+WiFi groups (exposed to 2.45 GHz then water bath of 43°C). On the 52nd day, the heart was removed, and its total volume and weight were determined using stereological techniques. The number of cardiomyocytes nuclei and the volume of the myocardium were determined. Blood samples were collected to measure reduced glutathione (GSH) content, Total Antioxidant Capacity (TAC), and malondialdehyde level (MDA). Data were analyzed by ANOVA, Kruskal-Wallis, and Mann-Whitney U tests. Results: The heart weight and volume density of the myocardium increased in the WiFi-irradiated group compared to the control group (P < 0.05). Also, exposure to WiFi increased MDA levels and decreased TAC and GSH compared to the control group (P < 0.05). Conclusions: This study indicated that RFW might cause structural changes and oxidative stress in the heart. Also, exposure to radiofrequency decreased total antioxidant activity in heart tissue with histological changes, including myocardium hypertrophy and decreased number of myocytes.