{"title":"Long-term no tillage alleviates subsoil compaction and drought-induced mechanical impedance","authors":"Hengfei Wang, Li Wang, T. Ren","doi":"10.31545/intagr/154596","DOIUrl":null,"url":null,"abstract":". No tillage was introduced to Northeast China to prevent the soil degradation caused by conventional tillage systems. However, there are concerns that no tillage will result in soil mechanical impedance. In this study, we investigated the effects of conventional tillage and no tillage on soil strength properties using a long-term field study initiated in 2011 on a silt clay loam soil. In 2018 and 2019, soil bulk density, water content, the degree of compactness, and penetrometer resistance were measured before tillage and after planting, and also, the changes in soil profile water content and penetrometer resistance were monitored during drying periods. Results showed that conventional tillage led to the formation of a compacted zone beneath the cultivated layer, with higher bulk density, degree of compactness, and penetrometer resistance values. After converting from conventional tillage to no tillage for 8 to 9 years, the bulk density, penetrometer resistance, and degree of compactness were increased to a moderate extent in the topsoil but were lowered in the subsurface soil. During drying periods, as compared to conventional tillage plots, the no tillage plots maintained higher water contents, which resulted in lower penetrometer resistances below a 15 cm depth and the later arrival of the threshold penetrometer resistance of 2 MPa. Long-term no tillage alleviated subsoil compaction and retarded drought-induced soil strength development.","PeriodicalId":13959,"journal":{"name":"International Agrophysics","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2022-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Agrophysics","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.31545/intagr/154596","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 2
Abstract
. No tillage was introduced to Northeast China to prevent the soil degradation caused by conventional tillage systems. However, there are concerns that no tillage will result in soil mechanical impedance. In this study, we investigated the effects of conventional tillage and no tillage on soil strength properties using a long-term field study initiated in 2011 on a silt clay loam soil. In 2018 and 2019, soil bulk density, water content, the degree of compactness, and penetrometer resistance were measured before tillage and after planting, and also, the changes in soil profile water content and penetrometer resistance were monitored during drying periods. Results showed that conventional tillage led to the formation of a compacted zone beneath the cultivated layer, with higher bulk density, degree of compactness, and penetrometer resistance values. After converting from conventional tillage to no tillage for 8 to 9 years, the bulk density, penetrometer resistance, and degree of compactness were increased to a moderate extent in the topsoil but were lowered in the subsurface soil. During drying periods, as compared to conventional tillage plots, the no tillage plots maintained higher water contents, which resulted in lower penetrometer resistances below a 15 cm depth and the later arrival of the threshold penetrometer resistance of 2 MPa. Long-term no tillage alleviated subsoil compaction and retarded drought-induced soil strength development.
期刊介绍:
The journal is focused on the soil-plant-atmosphere system. The journal publishes original research and review papers on any subject regarding soil, plant and atmosphere and the interface in between. Manuscripts on postharvest processing and quality of crops are also welcomed.
Particularly the journal is focused on the following areas:
implications of agricultural land use, soil management and climate change on production of biomass and renewable energy, soil structure, cycling of carbon, water, heat and nutrients, biota, greenhouse gases and environment,
soil-plant-atmosphere continuum and ways of its regulation to increase efficiency of water, energy and chemicals in agriculture,
postharvest management and processing of agricultural and horticultural products in relation to food quality and safety,
mathematical modeling of physical processes affecting environment quality, plant production and postharvest processing,
advances in sensors and communication devices to measure and collect information about physical conditions in agricultural and natural environments.
Papers accepted in the International Agrophysics should reveal substantial novelty and include thoughtful physical, biological and chemical interpretation and accurate description of the methods used.
All manuscripts are initially checked on topic suitability and linguistic quality.