{"title":"Método de algoritmo de clúster para el análisis del perfil de investigadores científicos","authors":"Gustavo Rodríguez Bárcenas","doi":"10.15517/eci.v12i2.50456","DOIUrl":null,"url":null,"abstract":"El aumento de la producción científica convierte en un desafío la tarea de identificar patrones y rasgos particulares que caractericen a los investigadores. Lograr establecer niveles de compatibilidad y similaridad entre actores en un contexto de investigación científica a partir de sus perfiles requiere de un proceso rápido y apropiado. El objetivo de este artículo es evaluar los niveles de similaridad, distancia euclidiana y compatibilidad entre vectores de investigadores, a partir de algoritmos de agrupamiento, escalamiento multidimensional, principios del modelo espacio-vectorial y atributos de sus perfiles científicos, considerando las terminologías que se abordan en su producción científica. Se utilizaron métodos teóricos y empíricos, incluyendo técnicas y herramientas de minería de texto. La aplicación del procedimiento en el Centro de Estudios de la Energía y Tecnología Avanzada de Cuba (CEETAM) y la Universidad Técnica de Cotopaxi (UTC) en Ecuador, evidenció su efectividad. Como resultado se pudo identificar los profesionales con mayores niveles de coincidencia en áreas a fines y líneas de investigación, lo que propicia el establecimiento de Comunidades Colectivas de Conocimientos; se pudo demostrar que los métodos empleados pueden ser integrados a las TIC, resultando en la obtención de relaciones perceptuales entre los investigadores y expresando los grupos que se forman a partir de conglomerados de observaciones en cada subcategoría y dominios de conocimientos de los dos casos de estudio analizados.","PeriodicalId":40544,"journal":{"name":"E-Ciencias de la Informacion","volume":" ","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"E-Ciencias de la Informacion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15517/eci.v12i2.50456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
El aumento de la producción científica convierte en un desafío la tarea de identificar patrones y rasgos particulares que caractericen a los investigadores. Lograr establecer niveles de compatibilidad y similaridad entre actores en un contexto de investigación científica a partir de sus perfiles requiere de un proceso rápido y apropiado. El objetivo de este artículo es evaluar los niveles de similaridad, distancia euclidiana y compatibilidad entre vectores de investigadores, a partir de algoritmos de agrupamiento, escalamiento multidimensional, principios del modelo espacio-vectorial y atributos de sus perfiles científicos, considerando las terminologías que se abordan en su producción científica. Se utilizaron métodos teóricos y empíricos, incluyendo técnicas y herramientas de minería de texto. La aplicación del procedimiento en el Centro de Estudios de la Energía y Tecnología Avanzada de Cuba (CEETAM) y la Universidad Técnica de Cotopaxi (UTC) en Ecuador, evidenció su efectividad. Como resultado se pudo identificar los profesionales con mayores niveles de coincidencia en áreas a fines y líneas de investigación, lo que propicia el establecimiento de Comunidades Colectivas de Conocimientos; se pudo demostrar que los métodos empleados pueden ser integrados a las TIC, resultando en la obtención de relaciones perceptuales entre los investigadores y expresando los grupos que se forman a partir de conglomerados de observaciones en cada subcategoría y dominios de conocimientos de los dos casos de estudio analizados.