{"title":"Study of cross-scale micro-motion wear characteristics of metallic rubber","authors":"Yonggang Bai, Zhou Huang, Xianjie Shi, Z. Guo, Zihao Huang, Zhiying Ren","doi":"10.1115/1.4062374","DOIUrl":null,"url":null,"abstract":"\n Metal rubber (MR) is a kind of elastic porous material with a complex and disordered internal structure, which results in wear characteristics that can only rely on tests but cannot meet the engineering application. This paper presents an exciting method for studying wear characteristics based on its virtual fabrication technology. By developing the intricate internal multipoint random contact mesh model of MR, a virtual real-time dynamic tracking contact point in a different state is captured. A thorough investigation is conducted into the contact point properties, point distribution, and the interaction of discrete contact points in MR interior space. Accordingly, a cross-scale micro-motion wear study method from micromorphology to macroscopic performance is proposed. The continuous wear cycle of MR is discretized into multiple single-turn metal wire elements by applying the principle of equal spacing. A statistical model of internal contact point wear of MR at the microlayer is developed considering the metal wire's single-turn fretting wear prediction model. The cumulative prediction model of macroscopic wear damage of MR is based on the superposition of micro-element interval. Finally, the difference between the mass loss and that obtained from the simulation analysis after performing dynamic loading tests at different cycles was studied and found to be insignificant.","PeriodicalId":17586,"journal":{"name":"Journal of Tribology-transactions of The Asme","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Tribology-transactions of The Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4062374","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 1
Abstract
Metal rubber (MR) is a kind of elastic porous material with a complex and disordered internal structure, which results in wear characteristics that can only rely on tests but cannot meet the engineering application. This paper presents an exciting method for studying wear characteristics based on its virtual fabrication technology. By developing the intricate internal multipoint random contact mesh model of MR, a virtual real-time dynamic tracking contact point in a different state is captured. A thorough investigation is conducted into the contact point properties, point distribution, and the interaction of discrete contact points in MR interior space. Accordingly, a cross-scale micro-motion wear study method from micromorphology to macroscopic performance is proposed. The continuous wear cycle of MR is discretized into multiple single-turn metal wire elements by applying the principle of equal spacing. A statistical model of internal contact point wear of MR at the microlayer is developed considering the metal wire's single-turn fretting wear prediction model. The cumulative prediction model of macroscopic wear damage of MR is based on the superposition of micro-element interval. Finally, the difference between the mass loss and that obtained from the simulation analysis after performing dynamic loading tests at different cycles was studied and found to be insignificant.
期刊介绍:
The Journal of Tribology publishes over 100 outstanding technical articles of permanent interest to the tribology community annually and attracts articles by tribologists from around the world. The journal features a mix of experimental, numerical, and theoretical articles dealing with all aspects of the field. In addition to being of interest to engineers and other scientists doing research in the field, the Journal is also of great importance to engineers who design or use mechanical components such as bearings, gears, seals, magnetic recording heads and disks, or prosthetic joints, or who are involved with manufacturing processes.
Scope: Friction and wear; Fluid film lubrication; Elastohydrodynamic lubrication; Surface properties and characterization; Contact mechanics; Magnetic recordings; Tribological systems; Seals; Bearing design and technology; Gears; Metalworking; Lubricants; Artificial joints