Tunable Thin Film Periodicities by Controlling the Orientation of Cylindrical Domains in Side Chain Liquid Crystalline Block Copolymers

IF 3.4 4区 化学 Q2 POLYMER SCIENCE International Journal of Polymer Science Pub Date : 2022-09-09 DOI:10.1155/2022/8286518
Lei Dong, A. Chandra, Kevin Wylie, Y. Nabae, T. Hayakawa
{"title":"Tunable Thin Film Periodicities by Controlling the Orientation of Cylindrical Domains in Side Chain Liquid Crystalline Block Copolymers","authors":"Lei Dong, A. Chandra, Kevin Wylie, Y. Nabae, T. Hayakawa","doi":"10.1155/2022/8286518","DOIUrl":null,"url":null,"abstract":"A facile approach to block copolymer (BCP) domain orientation control in thin films has been demonstrated by employing a BCP with liquid crystalline semifluorinated side chains by tuning the composition of the copolymers of the bottom surface layer (BSL). 1H,1H,2H,2H-Perfluorodecanethiol was attached to a precursor polymer, polystyrene-block-poly(glycidyl methacrylate) (PS-b-PGMA), to obtain a novel BCP with a C8F17-containing liquid crystal (LC) side chain (PS-b-P8FMA). Anisotropic hexagonally packed cylinder domains in a bulk state were first characterized by transmission electron microscopy (TEM) and small angle X-ray scattering (SAXS). The observed morphology transition of BCPs with different fluorinated side chain lengths of –CF3, –C4F9, and –C6F13 suggested the decisive effects of LC side chain ordering on the anisotropic nanostructures. In the thin film study, poly(methyl methacrylate-random-2,2,2-trifluoroethyl methacrylate-random-methacrylic acid) (PMMA-ran-PTFEMA-ran-PMAA) solution was used as BSLs for tuning the desired periodicities. The surface free energy (SFE) of BSL was simply tailored by changing the composition of comonomers. In atomic force microscopy (AFM) characterization, long-range ordered perpendicularly oriented BCP domains in a hexagonally packed array or parallel oriented BCP domains as striation patterns were easily fabricated on non-preferential or preferential BSL, respectively. The study presents a novel approach to tunable thin film periodicities without changing or modifying BCPs, which is desired in next-generation BCP lithography.","PeriodicalId":14283,"journal":{"name":"International Journal of Polymer Science","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2022-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Polymer Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2022/8286518","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

A facile approach to block copolymer (BCP) domain orientation control in thin films has been demonstrated by employing a BCP with liquid crystalline semifluorinated side chains by tuning the composition of the copolymers of the bottom surface layer (BSL). 1H,1H,2H,2H-Perfluorodecanethiol was attached to a precursor polymer, polystyrene-block-poly(glycidyl methacrylate) (PS-b-PGMA), to obtain a novel BCP with a C8F17-containing liquid crystal (LC) side chain (PS-b-P8FMA). Anisotropic hexagonally packed cylinder domains in a bulk state were first characterized by transmission electron microscopy (TEM) and small angle X-ray scattering (SAXS). The observed morphology transition of BCPs with different fluorinated side chain lengths of –CF3, –C4F9, and –C6F13 suggested the decisive effects of LC side chain ordering on the anisotropic nanostructures. In the thin film study, poly(methyl methacrylate-random-2,2,2-trifluoroethyl methacrylate-random-methacrylic acid) (PMMA-ran-PTFEMA-ran-PMAA) solution was used as BSLs for tuning the desired periodicities. The surface free energy (SFE) of BSL was simply tailored by changing the composition of comonomers. In atomic force microscopy (AFM) characterization, long-range ordered perpendicularly oriented BCP domains in a hexagonally packed array or parallel oriented BCP domains as striation patterns were easily fabricated on non-preferential or preferential BSL, respectively. The study presents a novel approach to tunable thin film periodicities without changing or modifying BCPs, which is desired in next-generation BCP lithography.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过控制侧链液晶嵌段共聚物中圆柱形畴的取向来调节薄膜周期
通过调节底部表面层(BSL)的共聚物的组成,使用具有液晶半氟化侧链的BCP,已经证明了在薄膜中控制嵌段共聚物(BCP)结构域取向的简单方法。将1H,1H,2H,2H-全氟癸硫醇连接到前体聚合物聚苯乙烯嵌段聚(甲基丙烯酸缩水甘油酯)(PS-b-PGMA)上,以获得具有含C8F17液晶(LC)侧链的新型BCP(PS-b-P8FMA)。首先用透射电子显微镜(TEM)和小角度X射线散射(SAXS)对体相各向异性六边形填充柱畴进行了表征。观察到的具有–CF3、–C4F9和–C6F13的不同氟化侧链长度的BCP的形态转变表明LC侧链有序化对各向异性纳米结构的决定性影响。在薄膜研究中,使用聚(甲基丙烯酸甲酯-丙烯酰胺-2,2,2-三氟乙基甲基丙烯酸无规甲基丙烯酸)(PMMA ran PTFEMA ran PMAA)溶液作为BSL来调节所需的周期性。通过改变共聚单体的组成,简单地调整了BSL的表面自由能。在原子力显微镜(AFM)表征中,六边形填充阵列中的长程有序垂直取向BCP畴或作为条纹图案的平行取向BCP域分别容易地在非优先或优先BSL上制造。该研究提出了一种在不改变或修改BCP的情况下实现可调薄膜周期性的新方法,这是下一代BCP光刻所需要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.10
自引率
0.00%
发文量
55
审稿时长
>12 weeks
期刊介绍: The International Journal of Polymer Science is a peer-reviewed, Open Access journal that publishes original research articles as well as review articles on the chemistry and physics of macromolecules.
期刊最新文献
Characterisation of Luffa cylindrica Fibre from Cameroon for Use in Composites: Effect of Alkaline Treatment Experimental Investigation on the 3D Printing of Nylon Reinforced by Carbon Fiber through Fused Filament Fabrication Process, Effects of Extruder Temperature, and Printing Speed Fracture Resistance of Endodontically Treated Teeth Restored Using Multifiber Posts Compared with Single Fiber Posts Comparison of the Film Properties of Lemon and Sour Cherry Seed Essential Oil-Added Glycerol and/or Sorbitol-Plasticized Corn, Potato, Rice, Tapioca, and Wheat Starch-Based Edible Films Thermal and Mechanical Performance of 3-Phase Polymer Composite Panels for Structural Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1