Sensitivity Analysis for the Adjusted Mann-Whitney Test with Observational Studies

Maozhu Dai, Weining Shen, H. Stern
{"title":"Sensitivity Analysis for the Adjusted Mann-Whitney Test with Observational Studies","authors":"Maozhu Dai, Weining Shen, H. Stern","doi":"10.1353/obs.2022.0002","DOIUrl":null,"url":null,"abstract":"Abstract:The Mann-Whitney test is a popular nonparametric test for comparing two samples. It has been recently extended by Satten et al. (2018) to allow testing for the existence of treatment effects in observational studies. Their proposed adjusted Mann-Whitney test relies on the unconfoundedness assumption which is untestable in practice. It hence becomes important to assess the impact of violating this assumption on the degree to which causal conclusions remain valid. In this paper, we consider a marginal sensitivity analysis framework to address this problem by utilizing a bootstrap approach that provides a sensitivity interval for the estimand with a guaranteed coverage probability as long as the data generating mechanism is included in the set of pre-specified sensitivity models. We develop efficient optimization algorithms for computing the sensitivity interval and further extend our approach to a general class of adjusted multi-sample U-statistics. Simulation studies and two real data applications are discussed to demonstrate the utility of our proposed methodology.","PeriodicalId":74335,"journal":{"name":"Observational studies","volume":"8 1","pages":"1 - 29"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Observational studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1353/obs.2022.0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract:The Mann-Whitney test is a popular nonparametric test for comparing two samples. It has been recently extended by Satten et al. (2018) to allow testing for the existence of treatment effects in observational studies. Their proposed adjusted Mann-Whitney test relies on the unconfoundedness assumption which is untestable in practice. It hence becomes important to assess the impact of violating this assumption on the degree to which causal conclusions remain valid. In this paper, we consider a marginal sensitivity analysis framework to address this problem by utilizing a bootstrap approach that provides a sensitivity interval for the estimand with a guaranteed coverage probability as long as the data generating mechanism is included in the set of pre-specified sensitivity models. We develop efficient optimization algorithms for computing the sensitivity interval and further extend our approach to a general class of adjusted multi-sample U-statistics. Simulation studies and two real data applications are discussed to demonstrate the utility of our proposed methodology.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
观察性研究校正Mann-Whitney检验的敏感性分析
摘要:Mann-Whitney检验是比较两个样本的常用非参数检验。Satten等人(2018)最近对其进行了扩展,以允许在观察性研究中测试治疗效果的存在。他们提出的调整曼-惠特尼检验依赖于在实践中无法检验的非混杂假设。因此,重要的是评估违反这一假设对因果结论保持有效程度的影响。在本文中,我们考虑了一个边际灵敏度分析框架来解决这个问题,该框架利用bootstrap方法为估计提供一个具有保证覆盖概率的灵敏度区间,只要数据生成机制包含在预先指定的灵敏度模型集中。我们开发了计算灵敏度区间的有效优化算法,并进一步将我们的方法扩展到一般的调整多样本u统计量。仿真研究和两个实际数据应用进行了讨论,以证明我们提出的方法的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
期刊最新文献
Does matching introduce confounding or selection bias into the matched case-control design? Size-biased sensitivity analysis for matched pairs design to assess the impact of healthcare-associated infections A Software Tutorial for Matching in Clustered Observational Studies Using a difference-in-difference control trial to test an intervention aimed at increasing the take-up of a welfare payment in New Zealand Estimating Treatment Effect with Propensity Score Weighted Regression and Double Machine Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1