‘Stable’ and ‘unstable’ are not useful descriptions of marine ice sheets in the Earth's climate system

IF 2.8 3区 地球科学 Q2 GEOGRAPHY, PHYSICAL Journal of Glaciology Pub Date : 2023-06-21 DOI:10.1017/jog.2023.40
O. Sergienko, M. Haseloff
{"title":"‘Stable’ and ‘unstable’ are not useful descriptions of marine ice sheets in the Earth's climate system","authors":"O. Sergienko, M. Haseloff","doi":"10.1017/jog.2023.40","DOIUrl":null,"url":null,"abstract":"Investigations of the time-dependent behavior of marine ice sheets and their sensitivity to basal conditions require numerical models because existing theoretical analyses focus only on steady-state configurations primarily with a power-law basal shear stress. Numerical results indicate that the choice of the sliding law strongly affects ice-sheet dynamic behavior. Although observed or simulated grounding-line retreat is typically interpreted as an indication of marine ice sheet instability introduced by Weertman (1974), this (in)stability is a characteristic of the ice sheet's steady states – not time-variant behavior. To bridge the gap between theoretical and numerical results, we develop a framework to investigate grounding line dynamics with generalized basal and lateral stresses (i.e. the functional dependencies are not specified). Motivated by observations of internal variability of the Southern Ocean conditions we explore the grounding-line response to stochastic variability. We find that adding stochastic variability to submarine melt rates that produced stable steady-state configurations leads to intermittently advancing and retreating grounding lines. They can also retreat in an unstoppable manner on time-scales significantly longer than the stochastic correlation time-scales. These results suggest that at any given time of their evolution, the transient behavior of marine ice sheets cannot be described in terms of ‘stable’ or ‘unstable’.","PeriodicalId":15981,"journal":{"name":"Journal of Glaciology","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Glaciology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1017/jog.2023.40","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 2

Abstract

Investigations of the time-dependent behavior of marine ice sheets and their sensitivity to basal conditions require numerical models because existing theoretical analyses focus only on steady-state configurations primarily with a power-law basal shear stress. Numerical results indicate that the choice of the sliding law strongly affects ice-sheet dynamic behavior. Although observed or simulated grounding-line retreat is typically interpreted as an indication of marine ice sheet instability introduced by Weertman (1974), this (in)stability is a characteristic of the ice sheet's steady states – not time-variant behavior. To bridge the gap between theoretical and numerical results, we develop a framework to investigate grounding line dynamics with generalized basal and lateral stresses (i.e. the functional dependencies are not specified). Motivated by observations of internal variability of the Southern Ocean conditions we explore the grounding-line response to stochastic variability. We find that adding stochastic variability to submarine melt rates that produced stable steady-state configurations leads to intermittently advancing and retreating grounding lines. They can also retreat in an unstoppable manner on time-scales significantly longer than the stochastic correlation time-scales. These results suggest that at any given time of their evolution, the transient behavior of marine ice sheets cannot be described in terms of ‘stable’ or ‘unstable’.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
“稳定”和“不稳定”不是对地球气候系统中海洋冰盖的有用描述
研究海洋冰盖的时间依赖行为及其对基底条件的敏感性需要数值模型,因为现有的理论分析只关注主要具有幂律基底剪切应力的稳态结构。数值结果表明,滑动规律的选择对冰盖的动力特性有很大影响。尽管观察到或模拟的接地线后退通常被解释为Weertman(1974)引入的海洋冰盖不稳定的迹象,但这种(内)稳定性是冰盖稳态的特征,而不是时变行为。为了弥补理论结果和数值结果之间的差距,我们开发了一个框架来研究具有广义基底应力和侧向应力的接地线动力学(即未指定函数相关性)。受南大洋条件内部变化观测的启发,我们探索了接地线对随机变化的响应。我们发现,在产生稳定稳态配置的海底融化速率中增加随机可变性会导致接地线间歇性前进和后退。它们也可以在时间尺度上以不可阻挡的方式撤退,时间尺度明显长于随机相关时间尺度。这些结果表明,在其演化的任何给定时间,海洋冰盖的瞬态行为都不能用“稳定”或“不稳定”来描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Glaciology
Journal of Glaciology 地学-地球科学综合
CiteScore
5.80
自引率
14.70%
发文量
101
审稿时长
6 months
期刊介绍: Journal of Glaciology publishes original scientific articles and letters in any aspect of glaciology- the study of ice. Studies of natural, artificial, and extraterrestrial ice and snow, as well as interactions between ice, snow and the atmospheric, oceanic and subglacial environment are all eligible. They may be based on field work, remote sensing, laboratory investigations, theoretical analysis or numerical modelling, or may report on newly developed glaciological instruments. Subjects covered recently in the Journal have included palaeoclimatology and the chemistry of the atmosphere as revealed in ice cores; theoretical and applied physics and chemistry of ice; the dynamics of glaciers and ice sheets, and changes in their extent and mass under climatic forcing; glacier energy balances at all scales; glacial landforms, and glaciers as geomorphic agents; snow science in all its aspects; ice as a host for surface and subglacial ecosystems; sea ice, icebergs and lake ice; and avalanche dynamics and other glacial hazards to human activity. Studies of permafrost and of ice in the Earth’s atmosphere are also within the domain of the Journal, as are interdisciplinary applications to engineering, biological, and social sciences, and studies in the history of glaciology.
期刊最新文献
Rift propagation signals the last act of the Thwaites Eastern Ice Shelf despite low basal melt rates Implications of high-resolution velocity and strain rate observations for modelling of Greenlandic tidewater glaciers Exploring canyons beneath Devon Ice Cap for sub-glacial drainage using radar and thermodynamic modeling Mechanical properties of pressure-frozen ice under triaxial compressive stress Retreat of the Greenland Ice Sheet leads to divergent patterns of reconfiguration at its freshwater and tidewater margins
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1