Viscoelastic Material Calibration Procedure for Rolling Resistance Calculation

IF 0.9 Q4 ENGINEERING, MECHANICAL Tire Science and Technology Pub Date : 2019-09-05 DOI:10.2346/tire.19.170157
Gabriel N. Curtosi, Pablo N. Zitelli, J. Kuster
{"title":"Viscoelastic Material Calibration Procedure for Rolling Resistance Calculation","authors":"Gabriel N. Curtosi, Pablo N. Zitelli, J. Kuster","doi":"10.2346/tire.19.170157","DOIUrl":null,"url":null,"abstract":"\n As tire engineers, the authors are interested in predicting rolling resistance using tools such as numerical simulation and tests. When a car is driven along, its tires are subjected to repeated deformation, leading to energy dissipation as heat. Each point of a loaded tire is deformed as it completes a revolution. Most energy dissipation comes from the cyclic loading of the tire, which causes the rolling resistance in addition to the friction force in the contact patch between the tire and road. Rolling resistance mainly depends on the viscoelastic energy dissipation of the rubber materials used to manufacture the tires. To obtain an accurate amount of dissipated energy, a good understanding of the material mathematical model and its behavior is mandatory. For this reason, a calibration procedure was developed. To obtain a good method for calculating rolling resistance, it is necessary to calibrate all rubber compounds of the tire at different temperatures and strain frequencies. Thus, to validate the calibration procedure, simulations were performed to evaluate the error between the tests and models at material sample and tire levels. For implementation of the calibration procedure in the finite element models of rolling tires, a procedure is briefly described that takes into account the change in properties caused by the temperature during the simulations. Linear viscoelasticity is used to model the properties of the materials and is found to be a suitable approach to tackle energy dissipation due to hysteresis for rolling resistance calculation.","PeriodicalId":44601,"journal":{"name":"Tire Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2019-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tire Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2346/tire.19.170157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

As tire engineers, the authors are interested in predicting rolling resistance using tools such as numerical simulation and tests. When a car is driven along, its tires are subjected to repeated deformation, leading to energy dissipation as heat. Each point of a loaded tire is deformed as it completes a revolution. Most energy dissipation comes from the cyclic loading of the tire, which causes the rolling resistance in addition to the friction force in the contact patch between the tire and road. Rolling resistance mainly depends on the viscoelastic energy dissipation of the rubber materials used to manufacture the tires. To obtain an accurate amount of dissipated energy, a good understanding of the material mathematical model and its behavior is mandatory. For this reason, a calibration procedure was developed. To obtain a good method for calculating rolling resistance, it is necessary to calibrate all rubber compounds of the tire at different temperatures and strain frequencies. Thus, to validate the calibration procedure, simulations were performed to evaluate the error between the tests and models at material sample and tire levels. For implementation of the calibration procedure in the finite element models of rolling tires, a procedure is briefly described that takes into account the change in properties caused by the temperature during the simulations. Linear viscoelasticity is used to model the properties of the materials and is found to be a suitable approach to tackle energy dissipation due to hysteresis for rolling resistance calculation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于滚动阻力计算的粘弹性材料校准程序
作为轮胎工程师,作者对使用数值模拟和测试等工具预测滚动阻力感兴趣。当汽车行驶时,轮胎会反复变形,导致能量以热量的形式耗散。加载轮胎的每个点在完成一圈时都会变形。大部分能量耗散来自轮胎的循环载荷,除了轮胎与道路接触处的摩擦力外,循环载荷还会产生滚动阻力。滚动阻力主要取决于用于制造轮胎的橡胶材料的粘弹性能量耗散。为了获得准确的耗散能量,必须充分了解材料的数学模型及其行为。为此,制定了一个校准程序。为了获得一种计算滚动阻力的好方法,有必要在不同的温度和应变频率下校准轮胎的所有橡胶化合物。因此,为了验证校准程序,进行了模拟,以评估材料样本和轮胎水平下测试和模型之间的误差。为了在滚动轮胎的有限元模型中实施校准程序,简要描述了一个程序,该程序考虑了模拟过程中温度引起的性能变化。线性粘弹性用于对材料的性能进行建模,并被发现是解决滚动阻力计算中由于滞后而导致的能量耗散的合适方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Tire Science and Technology
Tire Science and Technology ENGINEERING, MECHANICAL-
CiteScore
2.10
自引率
0.00%
发文量
11
期刊介绍: Tire Science and Technology is the world"s leading technical journal dedicated to tires. The Editor publishes original contributions that address the development and application of experimental, analytical, or computational science in which the tire figures prominently. Review papers may also be published. The journal aims to assure its readers authoritative, critically reviewed articles and the authors accessibility of their work in the permanent literature. The journal is published quarterly by the Tire Society, Inc., an Ohio not-for-profit corporation whose objective is to increase and disseminate knowledge of the science and technology of tires.
期刊最新文献
Influence of Tire-Enveloping Model Complexity on High-Frequency Simulations Determination of Penetration Depth and Excited Volume of Rubber in Klüppel Friction Theory from Friction Law Determination of Penetration Depth and Excited Volume of Rubber in Klüppel Friction Theory from Friction Law Target Conflict for Force Transmission in Lateral and Longitudinal Direction of Rotated Tread Block Samples on Different Road Surfaces (Dry, Wet, Snow, and Ice) Modelling Intrinsic Sources of Nonuniformity and Their Interplay
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1