{"title":"Data-driven gait model for bipedal locomotion over continuous changing speeds and inclines","authors":"Bharat Singh, Suchit Patel, Ankit Vijayvargiya, Rajesh Kumar","doi":"10.1007/s10514-023-10108-6","DOIUrl":null,"url":null,"abstract":"<div><p>Trajectory generation for biped robots is very complex due to the challenge posed by real-world uneven terrain. To address this complexity, this paper proposes a data-driven Gait model that can handle continuously changing conditions. Data-driven approaches are used to incorporate the joint relationships. Therefore, the deep learning methods are employed to develop seven different data-driven models, namely DNN, LSTM, GRU, BiLSTM, BiGRU, LSTM+GRU, and BiLSTM+BiGRU. The dataset used for training the Gait model consists of walking data from 10 able subjects on continuously changing inclines and speeds. The objective function incorporates the standard error from the inter-subject mean trajectory to guide the Gait model to not accurately follow the high variance points in the gait cycle, which helps in providing a smooth and continuous gait cycle. The results show that the proposed Gait models outperform the traditional finite state machine (FSM) and Basis models in terms of mean and maximum error summary statistics. In particular, the LSTM+GRU-based Gait model provides the best performance compared to other data-driven models.</p></div>","PeriodicalId":55409,"journal":{"name":"Autonomous Robots","volume":"47 6","pages":"753 - 769"},"PeriodicalIF":3.7000,"publicationDate":"2023-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autonomous Robots","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10514-023-10108-6","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Trajectory generation for biped robots is very complex due to the challenge posed by real-world uneven terrain. To address this complexity, this paper proposes a data-driven Gait model that can handle continuously changing conditions. Data-driven approaches are used to incorporate the joint relationships. Therefore, the deep learning methods are employed to develop seven different data-driven models, namely DNN, LSTM, GRU, BiLSTM, BiGRU, LSTM+GRU, and BiLSTM+BiGRU. The dataset used for training the Gait model consists of walking data from 10 able subjects on continuously changing inclines and speeds. The objective function incorporates the standard error from the inter-subject mean trajectory to guide the Gait model to not accurately follow the high variance points in the gait cycle, which helps in providing a smooth and continuous gait cycle. The results show that the proposed Gait models outperform the traditional finite state machine (FSM) and Basis models in terms of mean and maximum error summary statistics. In particular, the LSTM+GRU-based Gait model provides the best performance compared to other data-driven models.
期刊介绍:
Autonomous Robots reports on the theory and applications of robotic systems capable of some degree of self-sufficiency. It features papers that include performance data on actual robots in the real world. Coverage includes: control of autonomous robots · real-time vision · autonomous wheeled and tracked vehicles · legged vehicles · computational architectures for autonomous systems · distributed architectures for learning, control and adaptation · studies of autonomous robot systems · sensor fusion · theory of autonomous systems · terrain mapping and recognition · self-calibration and self-repair for robots · self-reproducing intelligent structures · genetic algorithms as models for robot development.
The focus is on the ability to move and be self-sufficient, not on whether the system is an imitation of biology. Of course, biological models for robotic systems are of major interest to the journal since living systems are prototypes for autonomous behavior.