Feature-Fused SAR Target Discrimination Using Multiple Convolutional Neural Networks

IF 4 3区 地球科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Geoscience and Remote Sensing Letters Pub Date : 2017-08-29 DOI:10.1109/LGRS.2017.2729159
Ning Wang, Yinghua Wang, Hongwei Liu, Qunsheng Zuo, Jinglu He
{"title":"Feature-Fused SAR Target Discrimination Using Multiple Convolutional Neural Networks","authors":"Ning Wang, Yinghua Wang, Hongwei Liu, Qunsheng Zuo, Jinglu He","doi":"10.1109/LGRS.2017.2729159","DOIUrl":null,"url":null,"abstract":"Target discrimination has been one of the hottest issues in the interpretation of synthetic aperture radar (SAR) images. However, the presence of speckle noise and the absence of robust features make SAR discrimination difficult to deal with. Recently, convolutional neural network has obtained state-of-the-art results in pattern recognition. In this letter, we propose a target discrimination framework that jointly uses intensity and edge information of SAR images. This framework contains three parts, namely, feature extraction block, feature fusion block, and final classification block. In addition, a novel feature fusion method that can preserve the spatial relationship of different features is introduced. Experimental results on the miniSAR data demonstrate the effectiveness of our method.","PeriodicalId":13046,"journal":{"name":"IEEE Geoscience and Remote Sensing Letters","volume":"14 1","pages":"1695-1699"},"PeriodicalIF":4.0000,"publicationDate":"2017-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/LGRS.2017.2729159","citationCount":"38","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Geoscience and Remote Sensing Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/LGRS.2017.2729159","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 38

Abstract

Target discrimination has been one of the hottest issues in the interpretation of synthetic aperture radar (SAR) images. However, the presence of speckle noise and the absence of robust features make SAR discrimination difficult to deal with. Recently, convolutional neural network has obtained state-of-the-art results in pattern recognition. In this letter, we propose a target discrimination framework that jointly uses intensity and edge information of SAR images. This framework contains three parts, namely, feature extraction block, feature fusion block, and final classification block. In addition, a novel feature fusion method that can preserve the spatial relationship of different features is introduced. Experimental results on the miniSAR data demonstrate the effectiveness of our method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多卷积神经网络的特征融合SAR目标识别
目标识别一直是合成孔径雷达(SAR)图像解译中的热点问题之一。然而,散斑噪声的存在和鲁棒性特征的缺乏使得SAR识别难以处理。近年来,卷积神经网络在模式识别方面取得了较好的研究成果。本文提出了一种综合利用SAR图像强度和边缘信息的目标识别框架。该框架包含三个部分,即特征提取块、特征融合块和最终分类块。此外,还提出了一种新的特征融合方法,可以保留不同特征之间的空间关系。在minsar数据上的实验结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Geoscience and Remote Sensing Letters
IEEE Geoscience and Remote Sensing Letters 工程技术-地球化学与地球物理
CiteScore
7.60
自引率
12.50%
发文量
1113
审稿时长
3.4 months
期刊介绍: IEEE Geoscience and Remote Sensing Letters (GRSL) is a monthly publication for short papers (maximum length 5 pages) addressing new ideas and formative concepts in remote sensing as well as important new and timely results and concepts. Papers should relate to the theory, concepts and techniques of science and engineering as applied to sensing the earth, oceans, atmosphere, and space, and the processing, interpretation, and dissemination of this information. The technical content of papers must be both new and significant. Experimental data must be complete and include sufficient description of experimental apparatus, methods, and relevant experimental conditions. GRSL encourages the incorporation of "extended objects" or "multimedia" such as animations to enhance the shorter papers.
期刊最新文献
Target-driven Real-time Geometric Processing Based on VLR Model for LuoJia3-02 Satellite A “Difference In Difference” based method for unsupervised change detection in season-varying images On the Potential of Orbital VHF Sounding Radars to Locate Shallow Aquifers in Arid Areas Using Reflectometry A two-branch neural network for gas-bearing prediction using latent space adaptation for data augmentation-An application for deep carbonate reservoirs AccuLiteFastNet: A Remote Sensing Object Detection Model Combining High Accuracy, Lightweight Design, and Fast Inference Speed
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1