Personalized Data Science and Personalized (N-of-1) Trials: Promising Paradigms for Individualized Health Care.

Harvard data science review Pub Date : 2022-01-01 Epub Date: 2022-09-08 DOI:10.1162/99608f92.8439a336
Naihua Duan, Daniel Norman, Christopher Schmid, Ida Sim, Richard L Kravitz
{"title":"Personalized Data Science and Personalized (N-of-1) Trials: Promising Paradigms for Individualized Health Care.","authors":"Naihua Duan, Daniel Norman, Christopher Schmid, Ida Sim, Richard L Kravitz","doi":"10.1162/99608f92.8439a336","DOIUrl":null,"url":null,"abstract":"<p><p>The term 'data science' usually refers to the process of extracting value from <i>big data</i> obtained from a large group of individuals. An alternative rendition, which we call <i>personalized data science</i> (Per-DS), aims to collect, analyze, and interpret <i>personal data</i> to inform <i>personal</i> decisions. This article describes the main features of Per-DS, and reviews its current state and future outlook. A Per-DS investigation is of, by, and for an individual, the Per-DS investigator, acting simultaneously as her own <i>investigator</i>, <i>study participant</i>, and <i>beneficiary</i>, and making <i>personalized</i> decisions for study design and implementation. The scope of Per-DS studies may include systematic monitoring of physiological or behavioral patterns, case-crossover studies for symptom triggers, pre-post trials for exposure-outcome relationships, and personalized (N-of-1) trials for effectiveness. Per-DS studies produce <i>personal knowledge</i> generalizable to the individual's future self (thus benefiting herself) rather than knowledge generalizable to an external population (thus benefiting others). This endeavor requires a pivot from <i>data mining</i> or <i>extraction</i> to <i>data gardening</i>, analogous to home gardeners producing food for home consumption-the Per-DS investigator needs to '<i>cultivate the field'</i> by setting goals, specifying study design, identifying necessary data elements, and assembling instruments and tools for data collection. Then, she can implement the study protocol, harvest her personal data, and <i>mine</i> the data to <i>extract</i> personal knowledge. To facilitate Per-DS studies, Per-DS investigators need support from community-based, scientific, philanthropic, business, and government entities, to develop and deploy resources such as peer forums, mobile apps, 'virtual field guides,' and scientific and regulatory guidance.</p>","PeriodicalId":73195,"journal":{"name":"Harvard data science review","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10673628/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Harvard data science review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1162/99608f92.8439a336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/9/8 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The term 'data science' usually refers to the process of extracting value from big data obtained from a large group of individuals. An alternative rendition, which we call personalized data science (Per-DS), aims to collect, analyze, and interpret personal data to inform personal decisions. This article describes the main features of Per-DS, and reviews its current state and future outlook. A Per-DS investigation is of, by, and for an individual, the Per-DS investigator, acting simultaneously as her own investigator, study participant, and beneficiary, and making personalized decisions for study design and implementation. The scope of Per-DS studies may include systematic monitoring of physiological or behavioral patterns, case-crossover studies for symptom triggers, pre-post trials for exposure-outcome relationships, and personalized (N-of-1) trials for effectiveness. Per-DS studies produce personal knowledge generalizable to the individual's future self (thus benefiting herself) rather than knowledge generalizable to an external population (thus benefiting others). This endeavor requires a pivot from data mining or extraction to data gardening, analogous to home gardeners producing food for home consumption-the Per-DS investigator needs to 'cultivate the field' by setting goals, specifying study design, identifying necessary data elements, and assembling instruments and tools for data collection. Then, she can implement the study protocol, harvest her personal data, and mine the data to extract personal knowledge. To facilitate Per-DS studies, Per-DS investigators need support from community-based, scientific, philanthropic, business, and government entities, to develop and deploy resources such as peer forums, mobile apps, 'virtual field guides,' and scientific and regulatory guidance.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
个性化数据科学和个性化(N-1)试验:个性化医疗的有希望的范式
“数据科学”一词通常是指从大量个人获得的大数据中提取价值的过程。另一种形式,我们称之为个性化数据科学(Per-DS),旨在收集、分析和解释个人数据,为个人决策提供信息。本文介绍了Per-DS的主要特性,并回顾了它的现状和未来展望。Per-DS调查由Per-DS调查员个人进行,同时作为她自己的调查员、研究参与者和受益人,并为研究设计和实施做出个性化的决定。Per-DS研究的范围可能包括生理或行为模式的系统监测,症状触发的病例交叉研究,暴露-结果关系的前后试验,以及有效性的个性化(N-of-1)试验。Per-DS研究产生的个人知识可推广到个人未来的自我(从而使自己受益),而不是可推广到外部人群(从而使他人受益)。这种努力需要从数据挖掘或提取到数据园艺的枢纽,类似于家庭园丁为家庭消费生产食物- Per-DS调查员需要通过设定目标,指定研究设计,识别必要的数据元素以及组装数据收集的仪器和工具来“培育田地”。然后,她可以执行研究方案,获取她的个人数据,并对数据进行挖掘以提取个人知识。为了促进Per-DS研究,Per-DS研究人员需要社区、科学、慈善、商业和政府实体的支持,以开发和部署诸如同行论坛、移动应用程序、“虚拟现场指南”以及科学和监管指导等资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Assessing the prognostic utility of clinical and radiomic features for COVID-19 patients admitted to ICU: challenges and lessons learned. Rejoinder: Building a Paradigm That Allows for the Possibility of Non-Ignorable Nonresponse Resolving the Credibility Crisis: Recommendations for Improving Predictive Algorithms for Clinical Utility The Birth of a New Discipline: Data Science Education Close to Refuge: Integrating AI and Human Insights for Intervention and Prevention: A Conversation With Seema Iyer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1