首页 > 最新文献

Harvard data science review最新文献

英文 中文
Assessing the prognostic utility of clinical and radiomic features for COVID-19 patients admitted to ICU: challenges and lessons learned. 评估入住重症监护室的 COVID-19 患者的临床和放射学特征的预后效用:挑战与经验教训。
Pub Date : 2024-01-01 Epub Date: 2024-01-31 DOI: 10.1162/99608f92.9d86a749
Yuming Sun, Stephen Salerno, Ziyang Pan, Eileen Yang, Chinakorn Sujimongkol, Jiyeon Song, Xinan Wang, Peisong Han, Donglin Zeng, Jian Kang, David C Christiani, Yi Li

Severe cases of COVID-19 often necessitate escalation to the Intensive Care Unit (ICU), where patients may face grave outcomes, including mortality. Chest X-rays play a crucial role in the diagnostic process for evaluating COVID-19 patients. Our collaborative efforts with Michigan Medicine in monitoring patient outcomes within the ICU have motivated us to investigate the potential advantages of incorporating clinical information and chest X-ray images for predicting patient outcomes. We propose an analytical workflow to address challenges such as the absence of standardized approaches for image pre-processing and data utilization. We then propose an ensemble learning approach designed to maximize the information derived from multiple prediction algorithms. This entails optimizing the weights within the ensemble and considering the common variability present in individual risk scores. Our simulations demonstrate the superior performance of this weighted ensemble averaging approach across various scenarios. We apply this refined ensemble methodology to analyze post-ICU COVID-19 mortality, an occurrence observed in 21% of COVID-19 patients admitted to the ICU at Michigan Medicine. Our findings reveal substantial performance improvement when incorporating imaging data compared to models trained solely on clinical risk factors. Furthermore, the addition of radiomic features yields even larger enhancements, particularly among older and more medically compromised patients. These results may carry implications for enhancing patient outcomes in similar clinical contexts.

严重的 COVID-19 病例往往需要升级到重症监护室(ICU),在重症监护室中,患者可能面临包括死亡在内的严重后果。胸部X光检查在评估COVID-19患者的诊断过程中起着至关重要的作用。我们与密歇根医学院合作监控重症监护室内的患者预后,这促使我们研究将临床信息和胸部 X 光图像结合起来预测患者预后的潜在优势。我们提出了一种分析工作流程,以应对图像预处理和数据利用缺乏标准化方法等挑战。然后,我们提出了一种集合学习方法,旨在最大限度地利用从多种预测算法中获得的信息。这就需要优化集合内的权重,并考虑单个风险评分中存在的共同变异性。我们的模拟证明了这种加权集合平均法在各种情况下的卓越性能。我们将这种改进的集合方法应用于分析密歇根医学院重症监护室 COVID-19 后的死亡率,在重症监护室收治的 COVID-19 患者中有 21% 出现了这种情况。我们的研究结果表明,与仅根据临床风险因素训练的模型相比,加入成像数据后,模型的性能有了大幅提高。此外,加入放射学特征后,性能提高幅度更大,尤其是在年龄较大和病情较重的患者中。这些结果可能对提高类似临床情况下的患者预后有一定的意义。
{"title":"Assessing the prognostic utility of clinical and radiomic features for COVID-19 patients admitted to ICU: challenges and lessons learned.","authors":"Yuming Sun, Stephen Salerno, Ziyang Pan, Eileen Yang, Chinakorn Sujimongkol, Jiyeon Song, Xinan Wang, Peisong Han, Donglin Zeng, Jian Kang, David C Christiani, Yi Li","doi":"10.1162/99608f92.9d86a749","DOIUrl":"10.1162/99608f92.9d86a749","url":null,"abstract":"<p><p>Severe cases of COVID-19 often necessitate escalation to the Intensive Care Unit (ICU), where patients may face grave outcomes, including mortality. Chest X-rays play a crucial role in the diagnostic process for evaluating COVID-19 patients. Our collaborative efforts with Michigan Medicine in monitoring patient outcomes within the ICU have motivated us to investigate the potential advantages of incorporating clinical information and chest X-ray images for predicting patient outcomes. We propose an analytical workflow to address challenges such as the absence of standardized approaches for image pre-processing and data utilization. We then propose an ensemble learning approach designed to maximize the information derived from multiple prediction algorithms. This entails optimizing the weights within the ensemble and considering the common variability present in individual risk scores. Our simulations demonstrate the superior performance of this weighted ensemble averaging approach across various scenarios. We apply this refined ensemble methodology to analyze post-ICU COVID-19 mortality, an occurrence observed in 21% of COVID-19 patients admitted to the ICU at Michigan Medicine. Our findings reveal substantial performance improvement when incorporating imaging data compared to models trained solely on clinical risk factors. Furthermore, the addition of radiomic features yields even larger enhancements, particularly among older and more medically compromised patients. These results may carry implications for enhancing patient outcomes in similar clinical contexts.</p>","PeriodicalId":73195,"journal":{"name":"Harvard data science review","volume":"6 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11225107/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141556055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rejoinder: Building a Paradigm That Allows for the Possibility of Non-Ignorable Nonresponse 反驳:建立一个允许不可忽略的非响应可能性的范式
Pub Date : 2023-11-09 DOI: 10.1162/99608f92.4187b1b4
Michael A. Bailey
{"title":"Rejoinder: Building a Paradigm That Allows for the Possibility of Non-Ignorable Nonresponse","authors":"Michael A. Bailey","doi":"10.1162/99608f92.4187b1b4","DOIUrl":"https://doi.org/10.1162/99608f92.4187b1b4","url":null,"abstract":"","PeriodicalId":73195,"journal":{"name":"Harvard data science review","volume":" 117","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135241135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Close to Refuge: Integrating AI and Human Insights for Intervention and Prevention: A Conversation With Seema Iyer 接近避难所:整合人工智能和人类的干预和预防见解:与Seema Iyer的对话
Pub Date : 2023-10-27 DOI: 10.1162/99608f92.1a58d824
Seema Iyer, Xiao-Li Meng, Liberty Vittert
{"title":"Close to Refuge: Integrating AI and Human Insights for Intervention and Prevention: A Conversation With Seema Iyer","authors":"Seema Iyer, Xiao-Li Meng, Liberty Vittert","doi":"10.1162/99608f92.1a58d824","DOIUrl":"https://doi.org/10.1162/99608f92.1a58d824","url":null,"abstract":"","PeriodicalId":73195,"journal":{"name":"Harvard data science review","volume":"15 1-2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136263122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Intelligence and Rationality of AI and Humans: A Conversation With Steven Pinker 《人工智能与人类的智慧与理性:与史蒂芬·平克的对话
Pub Date : 2023-10-27 DOI: 10.1162/99608f92.c37d3572
Steven Pinker, Xiao-Li Meng, Liberty Vittert
{"title":"The Intelligence and Rationality of AI and Humans: A Conversation With Steven Pinker","authors":"Steven Pinker, Xiao-Li Meng, Liberty Vittert","doi":"10.1162/99608f92.c37d3572","DOIUrl":"https://doi.org/10.1162/99608f92.c37d3572","url":null,"abstract":"","PeriodicalId":73195,"journal":{"name":"Harvard data science review","volume":"151 6","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136263986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Crisis? What Crisis? Sociology’s Slow Progress Toward Scientific Transparency 危机?什么危机?社会学走向科学透明的缓慢进程
Pub Date : 2023-10-27 DOI: 10.1162/99608f92.151c41e3
Kim A. Weeden
{"title":"Crisis? What Crisis? Sociology’s Slow Progress Toward Scientific Transparency","authors":"Kim A. Weeden","doi":"10.1162/99608f92.151c41e3","DOIUrl":"https://doi.org/10.1162/99608f92.151c41e3","url":null,"abstract":"","PeriodicalId":73195,"journal":{"name":"Harvard data science review","volume":"122 6","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136317015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Demonstrations of the Potential of AI-based Political Issue Polling 基于人工智能的政治问题民意调查的潜力展示
Pub Date : 2023-10-27 DOI: 10.1162/99608f92.1d3cf75d
Nathan E. Sanders, Alex Ulinich, Bruce Schneier
{"title":"Demonstrations of the Potential of AI-based Political Issue Polling","authors":"Nathan E. Sanders, Alex Ulinich, Bruce Schneier","doi":"10.1162/99608f92.1d3cf75d","DOIUrl":"https://doi.org/10.1162/99608f92.1d3cf75d","url":null,"abstract":"","PeriodicalId":73195,"journal":{"name":"Harvard data science review","volume":"146 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136318265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Understanding and Fostering Regional Artificial Intelligence Ecosystems: A Case Study in Maine 理解和促进区域人工智能生态系统:以缅因州为例
Pub Date : 2023-10-27 DOI: 10.1162/99608f92.dc2a1d1b
Hamit Hamutcu, Usama Fayyad, Michael Pollastri
{"title":"Understanding and Fostering Regional Artificial Intelligence Ecosystems: A Case Study in Maine","authors":"Hamit Hamutcu, Usama Fayyad, Michael Pollastri","doi":"10.1162/99608f92.dc2a1d1b","DOIUrl":"https://doi.org/10.1162/99608f92.dc2a1d1b","url":null,"abstract":"","PeriodicalId":73195,"journal":{"name":"Harvard data science review","volume":"271 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136316714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Resolving the Credibility Crisis: Recommendations for Improving Predictive Algorithms for Clinical Utility 解决信誉危机:改进临床应用预测算法的建议
Pub Date : 2023-10-27 DOI: 10.1162/99608f92.c1292c54
Stephen Ruberg, Sandeep Menon, Charmaine Demanuele
{"title":"Resolving the Credibility Crisis: Recommendations for Improving Predictive Algorithms for Clinical Utility","authors":"Stephen Ruberg, Sandeep Menon, Charmaine Demanuele","doi":"10.1162/99608f92.c1292c54","DOIUrl":"https://doi.org/10.1162/99608f92.c1292c54","url":null,"abstract":"","PeriodicalId":73195,"journal":{"name":"Harvard data science review","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136234468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Perils and Opportunities of ChatGPT: A High School Perspective 聊天的风险和机遇:高中视角
Pub Date : 2023-10-27 DOI: 10.1162/99608f92.9f0adc39
Nicole Lazar, James Byrns, Danielle Crowe, Meghan McGinty, Angela Abraham, Mike Guo, Megan Mann, Prithvi Narayanan, Lydia Roberts, Benjamin Sidore, Maxwell Wager
{"title":"Perils and Opportunities of ChatGPT: A High School Perspective","authors":"Nicole Lazar, James Byrns, Danielle Crowe, Meghan McGinty, Angela Abraham, Mike Guo, Megan Mann, Prithvi Narayanan, Lydia Roberts, Benjamin Sidore, Maxwell Wager","doi":"10.1162/99608f92.9f0adc39","DOIUrl":"https://doi.org/10.1162/99608f92.9f0adc39","url":null,"abstract":"","PeriodicalId":73195,"journal":{"name":"Harvard data science review","volume":"83 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136316681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Birth of a New Discipline: Data Science Education 一个新学科的诞生:数据科学教育
Pub Date : 2023-10-27 DOI: 10.1162/99608f92.280afe66
Koby Mike, Benny Kimelfeld, Orit Hazzan
{"title":"The Birth of a New Discipline: Data Science Education","authors":"Koby Mike, Benny Kimelfeld, Orit Hazzan","doi":"10.1162/99608f92.280afe66","DOIUrl":"https://doi.org/10.1162/99608f92.280afe66","url":null,"abstract":"","PeriodicalId":73195,"journal":{"name":"Harvard data science review","volume":"85 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136262883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Harvard data science review
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1