Patrick J. C. White, Chris Stoate, Nicholas J. Aebischer, John Szczur, Lucy Ferrer, Ken Norris
{"title":"Choice of model and re-nesting probability function influences behaviour of avian seasonal productivity models and their demographic predictions","authors":"Patrick J. C. White, Chris Stoate, Nicholas J. Aebischer, John Szczur, Lucy Ferrer, Ken Norris","doi":"10.1111/ibi.13267","DOIUrl":null,"url":null,"abstract":"<p>Measuring seasonal productivity is difficult in multi-brooded species without labour-intensive ringing studies. Individual-based (IB) models have been used to estimate seasonal productivity with no direct knowledge of number of nesting attempts, but they are often based on simplified re-nesting probability (φ<sub><i>R</i></sub>) step-functions instead of observed or more biologically plausible ones. We present a new, open-source IB seasonal productivity model parameterized from studies of Black Redstart <i>Phoenicurus ochruros</i> and Yellowhammer <i>Emberiza citrinella</i>. We examined how the φ<sub><i>R</i></sub> function shape (empirical versus simplified) influenced (1) model performance, (2) re-nesting compensation and (3) population-level predictions of a simulated management intervention. Population-level predictions were made only for Yellowhammer as we had more detailed demographic data, such as survival rates, available. Pattern-oriented modelling revealed that IB models produced realistic within-population distributions of breeding parameters, and those specified with an observed or empirically derived φ<sub><i>R</i></sub> function generally outperformed those specified with simpler step functions. Strength of re-nesting compensation differed depending on the φ<sub><i>R</i></sub> function used. For Yellowhammers, type of φ<sub><i>R</i></sub> function in IB models marginally influenced population-level predictions of a simulated management intervention (potential population growth rate increased between 23% and 29% relative to no management intervention). In contrast, a simple deterministic productivity model, which did not simulate re-nesting compensation, predicted a 41% increase in potential population growth. At a population level, choice of φ<sub><i>R</i></sub> function may have less influence on IB model predictions, but choice of model itself (IB versus deterministic) may have substantial impact. We discuss how more biologically plausible φ<sub><i>R</i></sub> functions might either be observed directly, derived from nest data, or estimated from proxy information such as moult or brood patch changes.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ibi.13267","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ibi.13267","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Measuring seasonal productivity is difficult in multi-brooded species without labour-intensive ringing studies. Individual-based (IB) models have been used to estimate seasonal productivity with no direct knowledge of number of nesting attempts, but they are often based on simplified re-nesting probability (φR) step-functions instead of observed or more biologically plausible ones. We present a new, open-source IB seasonal productivity model parameterized from studies of Black Redstart Phoenicurus ochruros and Yellowhammer Emberiza citrinella. We examined how the φR function shape (empirical versus simplified) influenced (1) model performance, (2) re-nesting compensation and (3) population-level predictions of a simulated management intervention. Population-level predictions were made only for Yellowhammer as we had more detailed demographic data, such as survival rates, available. Pattern-oriented modelling revealed that IB models produced realistic within-population distributions of breeding parameters, and those specified with an observed or empirically derived φR function generally outperformed those specified with simpler step functions. Strength of re-nesting compensation differed depending on the φR function used. For Yellowhammers, type of φR function in IB models marginally influenced population-level predictions of a simulated management intervention (potential population growth rate increased between 23% and 29% relative to no management intervention). In contrast, a simple deterministic productivity model, which did not simulate re-nesting compensation, predicted a 41% increase in potential population growth. At a population level, choice of φR function may have less influence on IB model predictions, but choice of model itself (IB versus deterministic) may have substantial impact. We discuss how more biologically plausible φR functions might either be observed directly, derived from nest data, or estimated from proxy information such as moult or brood patch changes.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.