首页 > 最新文献

Ibis最新文献

英文 中文
British Ornithologists' Union Records Committee (BOURC): 58th Report (January 2026) 英国鸟类学家联盟记录委员会(BOURC):第58次报告(2026年1月)
IF 2.1 3区 生物学 Q1 ORNITHOLOGY Pub Date : 2025-12-11 DOI: 10.1111/ibi.70009
<p>This report covers the period October 2024 to September 2025. The 57th Report appeared in <i>Ibis</i> 167: 312–323.</p><p>The following changes have been made to the British List.</p><p>The following has been considered as the first record of this species and has been added to Category E:</p><p>Following a review and consultation by BOURC, the BOU adopted the taxonomy of the International Ornithological Congress (IOC) World Bird List from 1 January 2018, including for the British List (<i>Ibis</i> 159: 928). The initial decision to follow IOC was based significantly on the emerging collaboration between IOC World Bird List and eBird/Clements to harmonize global avian taxonomies. Seven years later and a unified global avian taxonomy – AviList – was published in June 2025, the product of collaboration between teams from BirdLife International, the IOC World Bird List, the eBird/Clements Checklist, American Ornithological Society North American Classification Committee (AOS-NACC) and South American Classification Committee (SACC) as well as the Working Group on Avian Nomenclature (WGAC)'s own experts. Following this work, the IOC World Bird List will be discontinuing its independent taxonomic efforts. The BOU now follows AviList taxonomy and this change has implications for the British List.</p><p>The linear sequence of orders is revised:</p><p>Anseriformes</p><p>Galliformes</p><p>Podicipediformes</p><p>Otidiformes</p><p>Cuculiformes</p><p>Pterocliformes</p><p>Columbiformes</p><p>Gruiformes</p><p>Charadriiformes</p><p>Phaethontiformes</p><p>Gaviiformes</p><p>Procellariiformes</p><p>Ciconiiformes</p><p>Suliformes</p><p>Pelecaniformes</p><p>Caprimulgiformes</p><p>Apodiformes</p><p>Strigiformes</p><p>Accipitriformes</p><p>Bucerotiformes</p><p>Coraciiformes</p><p>Piciformes</p><p>Falconiformes</p><p>Psittaciformes</p><p>Passeriformes</p><p>The linear sequence of families is revised:</p><p>Anatidae</p><p>Phasianidae</p><p>Podicipedidae</p><p>Otididae</p><p>Cuculidae</p><p>Pteroclidae</p><p>Columbidae</p><p>Gruidae</p><p>Rallidae</p><p>Burhinidae</p><p>Recurvirostridae</p><p>Haematopodidae</p><p>Charadriidae</p><p>Scolopacidae</p><p>Glareolidae</p><p>Stercorariidae</p><p>Alcidae</p><p>Laridae</p><p>Phaethontidae</p><p>Gaviidae</p><p>Diomedeidae</p><p>Oceanitidae</p><p>Hydrobatidae</p><p>Procellariidae</p><p>Ciconiidae</p><p>Fregatidae</p><p>Sulidae</p><p>Phalacrocoracidae</p><p>Threskiornithidae</p><p>Pelecanidae</p><p>Ardeidae</p><p>Caprimulgidae</p><p>Apodidae</p><p>Tytonidae</p><p>Strigidae</p><p>Pandionidae</p><p>Accipitridae</p><p>Upupidae</p><p>Coraciidae</p><p>Meropidae</p><p>Alcedinidae</p><p>Picidae</p><p>Falconidae</p><p>Psittaculidae</p><p>Tyrannidae</p><p>Vireonidae</p><p>Oriolidae</p><p>Laniidae</p><p>Corvidae</p><p>Remizidae</p><p>Paridae</p><p>Panuridae</p><p>Alaudidae</p><p>Cisticolidae</p><p>Acrocephalidae</p><p>Locustellidae</p><p>Hirundinidae</p><p>Aegithalidae</p><p>Cettiidae</p><p>Phylloscopidae</p><p>Sylviidae</p><p>Bombycillidae<
本报告涵盖2024年10月至2025年9月期间。第57次报告发表于《宜必思》167:312-323。以下是英国名单的变化。以下已被视为该物种的首次记录,并已被添加到E类:经过BOURC的审查和咨询,BOU从2018年1月1日起采用了国际鸟类大会(IOC)世界鸟类名录的分类,包括英国名单(朱鹮159:928)。遵循IOC的最初决定在很大程度上是基于IOC世界鸟类名录和eBird/ elements之间的合作,以协调全球鸟类分类。七年后,一个统一的全球鸟类分类——AviList——于2025年6月出版,它是国际鸟盟、国际奥委会世界鸟类名录、电子鸟类/元素清单、美国鸟类学会北美分类委员会(AOS-NACC)和南美分类委员会(SACC)以及鸟类命名法工作组(WGAC)自己的专家合作的产物。在这项工作之后,国际奥委会《世界鸟类名录》将停止其独立的分类工作。BOU现在遵循AviList分类法,这一变化对英国名单有影响。对目的线性序列进行了修改:anserformesgalliformespodicipediformesotidiformescuculiformespterocliformescolumbiformesgruiformescharadriiformesphaethontiformesgaviiformesprocellariiformesciconiformessuliformesespelecaniformesacciformesacciformesbucerotiformesescoraciiformespiciformesfalconformespsittaciformespasseriformes科的线性序列为修正:AnatidaePhasianidaePodicipedidaeOtididaeCuculidaePteroclidaeColumbidaeGruidaeRallidaeBurhinidaeRecurvirostridaeHaematopodidaeCharadriidaeScolopacidaeGlareolidaeStercorariidaeAlcidaeLaridaePhaethontidaeGaviidaeDiomedeidaeOceanitidaeHydrobatidaeProcellariidaeCiconiidaeFregatidaeSulidaePhalacrocoracidaeThreskiornithidaePelecanidaeArdeidaeCaprimulgidaeApodidaeTytonidaeStrigidaePandionidaeAccipitridaeUpupidaeCoraciidaeMeropidaeAlcedinidaePicidaeFalconidaePsittaculidaeTyrannidaeVireonidaeOriol小环鸻属由双色鸻属演变为双色鸻属。小环鸻属由双色鸻属演变为双色鸻属。对属的线性序列进行修正:白头翁、白头翁、白头翁、白头翁、白头翁、白头翁、白头翁内藤:青苔、青苔、青苔、青苔、青苔、青苔、青苔、青苔、青苔足足虫足头虫耳虫四衣原虫蛤尾虫弓形虫天顶虫长链虫弓形虫安提戈尼松茸斑马鱼、白斑鱼、斑马鱼、斑马鱼、斑马鱼、斑马鱼、斑马鱼、斑马鱼、斑马鱼、斑马鱼、斑马鱼、斑马鱼、斑马鱼凤头蛱蝶,凤头蛱蝶,凤头蛱蝶,凤头蛱蝶
{"title":"British Ornithologists' Union Records Committee (BOURC): 58th Report (January 2026)","authors":"","doi":"10.1111/ibi.70009","DOIUrl":"https://doi.org/10.1111/ibi.70009","url":null,"abstract":"&lt;p&gt;This report covers the period October 2024 to September 2025. The 57th Report appeared in &lt;i&gt;Ibis&lt;/i&gt; 167: 312–323.&lt;/p&gt;&lt;p&gt;The following changes have been made to the British List.&lt;/p&gt;&lt;p&gt;The following has been considered as the first record of this species and has been added to Category E:&lt;/p&gt;&lt;p&gt;Following a review and consultation by BOURC, the BOU adopted the taxonomy of the International Ornithological Congress (IOC) World Bird List from 1 January 2018, including for the British List (&lt;i&gt;Ibis&lt;/i&gt; 159: 928). The initial decision to follow IOC was based significantly on the emerging collaboration between IOC World Bird List and eBird/Clements to harmonize global avian taxonomies. Seven years later and a unified global avian taxonomy – AviList – was published in June 2025, the product of collaboration between teams from BirdLife International, the IOC World Bird List, the eBird/Clements Checklist, American Ornithological Society North American Classification Committee (AOS-NACC) and South American Classification Committee (SACC) as well as the Working Group on Avian Nomenclature (WGAC)'s own experts. Following this work, the IOC World Bird List will be discontinuing its independent taxonomic efforts. The BOU now follows AviList taxonomy and this change has implications for the British List.&lt;/p&gt;&lt;p&gt;The linear sequence of orders is revised:&lt;/p&gt;&lt;p&gt;Anseriformes&lt;/p&gt;&lt;p&gt;Galliformes&lt;/p&gt;&lt;p&gt;Podicipediformes&lt;/p&gt;&lt;p&gt;Otidiformes&lt;/p&gt;&lt;p&gt;Cuculiformes&lt;/p&gt;&lt;p&gt;Pterocliformes&lt;/p&gt;&lt;p&gt;Columbiformes&lt;/p&gt;&lt;p&gt;Gruiformes&lt;/p&gt;&lt;p&gt;Charadriiformes&lt;/p&gt;&lt;p&gt;Phaethontiformes&lt;/p&gt;&lt;p&gt;Gaviiformes&lt;/p&gt;&lt;p&gt;Procellariiformes&lt;/p&gt;&lt;p&gt;Ciconiiformes&lt;/p&gt;&lt;p&gt;Suliformes&lt;/p&gt;&lt;p&gt;Pelecaniformes&lt;/p&gt;&lt;p&gt;Caprimulgiformes&lt;/p&gt;&lt;p&gt;Apodiformes&lt;/p&gt;&lt;p&gt;Strigiformes&lt;/p&gt;&lt;p&gt;Accipitriformes&lt;/p&gt;&lt;p&gt;Bucerotiformes&lt;/p&gt;&lt;p&gt;Coraciiformes&lt;/p&gt;&lt;p&gt;Piciformes&lt;/p&gt;&lt;p&gt;Falconiformes&lt;/p&gt;&lt;p&gt;Psittaciformes&lt;/p&gt;&lt;p&gt;Passeriformes&lt;/p&gt;&lt;p&gt;The linear sequence of families is revised:&lt;/p&gt;&lt;p&gt;Anatidae&lt;/p&gt;&lt;p&gt;Phasianidae&lt;/p&gt;&lt;p&gt;Podicipedidae&lt;/p&gt;&lt;p&gt;Otididae&lt;/p&gt;&lt;p&gt;Cuculidae&lt;/p&gt;&lt;p&gt;Pteroclidae&lt;/p&gt;&lt;p&gt;Columbidae&lt;/p&gt;&lt;p&gt;Gruidae&lt;/p&gt;&lt;p&gt;Rallidae&lt;/p&gt;&lt;p&gt;Burhinidae&lt;/p&gt;&lt;p&gt;Recurvirostridae&lt;/p&gt;&lt;p&gt;Haematopodidae&lt;/p&gt;&lt;p&gt;Charadriidae&lt;/p&gt;&lt;p&gt;Scolopacidae&lt;/p&gt;&lt;p&gt;Glareolidae&lt;/p&gt;&lt;p&gt;Stercorariidae&lt;/p&gt;&lt;p&gt;Alcidae&lt;/p&gt;&lt;p&gt;Laridae&lt;/p&gt;&lt;p&gt;Phaethontidae&lt;/p&gt;&lt;p&gt;Gaviidae&lt;/p&gt;&lt;p&gt;Diomedeidae&lt;/p&gt;&lt;p&gt;Oceanitidae&lt;/p&gt;&lt;p&gt;Hydrobatidae&lt;/p&gt;&lt;p&gt;Procellariidae&lt;/p&gt;&lt;p&gt;Ciconiidae&lt;/p&gt;&lt;p&gt;Fregatidae&lt;/p&gt;&lt;p&gt;Sulidae&lt;/p&gt;&lt;p&gt;Phalacrocoracidae&lt;/p&gt;&lt;p&gt;Threskiornithidae&lt;/p&gt;&lt;p&gt;Pelecanidae&lt;/p&gt;&lt;p&gt;Ardeidae&lt;/p&gt;&lt;p&gt;Caprimulgidae&lt;/p&gt;&lt;p&gt;Apodidae&lt;/p&gt;&lt;p&gt;Tytonidae&lt;/p&gt;&lt;p&gt;Strigidae&lt;/p&gt;&lt;p&gt;Pandionidae&lt;/p&gt;&lt;p&gt;Accipitridae&lt;/p&gt;&lt;p&gt;Upupidae&lt;/p&gt;&lt;p&gt;Coraciidae&lt;/p&gt;&lt;p&gt;Meropidae&lt;/p&gt;&lt;p&gt;Alcedinidae&lt;/p&gt;&lt;p&gt;Picidae&lt;/p&gt;&lt;p&gt;Falconidae&lt;/p&gt;&lt;p&gt;Psittaculidae&lt;/p&gt;&lt;p&gt;Tyrannidae&lt;/p&gt;&lt;p&gt;Vireonidae&lt;/p&gt;&lt;p&gt;Oriolidae&lt;/p&gt;&lt;p&gt;Laniidae&lt;/p&gt;&lt;p&gt;Corvidae&lt;/p&gt;&lt;p&gt;Remizidae&lt;/p&gt;&lt;p&gt;Paridae&lt;/p&gt;&lt;p&gt;Panuridae&lt;/p&gt;&lt;p&gt;Alaudidae&lt;/p&gt;&lt;p&gt;Cisticolidae&lt;/p&gt;&lt;p&gt;Acrocephalidae&lt;/p&gt;&lt;p&gt;Locustellidae&lt;/p&gt;&lt;p&gt;Hirundinidae&lt;/p&gt;&lt;p&gt;Aegithalidae&lt;/p&gt;&lt;p&gt;Cettiidae&lt;/p&gt;&lt;p&gt;Phylloscopidae&lt;/p&gt;&lt;p&gt;Sylviidae&lt;/p&gt;&lt;p&gt;Bombycillidae&lt;","PeriodicalId":13254,"journal":{"name":"Ibis","volume":"168 1","pages":"395-410"},"PeriodicalIF":2.1,"publicationDate":"2025-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ibi.70009","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145719683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Breeding and foraging habitat are important in determining foraging ranges of sympatric generalist species 繁殖和觅食生境是决定同域通用型物种觅食范围的重要因素
IF 2.1 3区 生物学 Q1 ORNITHOLOGY Pub Date : 2025-10-07 DOI: 10.1111/ibi.13446
Chris B. Thaxter, Lucy R. Quinn, Philip W. Atkinson, Katherine A. Booth Jones, Nigel A. Clark, Gary D. Clewley, Ros M. W. Green, Nina J. O'Hanlon, Daniel T. Johnston, Elizabeth A. Masden, Viola H. Ross-Smith, Elspeth L. Sage, Emily Scragg, Rachel C. Taylor, Niall H. K. Burton, Elizabeth M. Humphreys

How far animals travel to gather food for offspring or themselves is a central component of ecology. Among birds, the ‘foraging range’ (straight-line distance between a central place and a destination) is used to assess potential interactions with anthropogenic stressors such as wind farms. Recent reviews have summarized marine foraging ranges for UK breeding seabirds. However, for species that span the terrestrial/marine divide (some gulls, terns, sawbills and divers), terrestrial ranges are unknown, as is an understanding of how ranges may vary by breeding colony and their surrounding habitat. Using global positioning satellite (GPS) telemetry, we studied the movements of Lesser Black-backed Gulls Larus fuscus and Herring Gulls L. argentatus from 11 and seven UK breeding colonies, respectively, over 12 years. We investigated the variation in foraging range using general mixed effects models with respect to: (i) terrestrial and marine environments; (ii) stages of the breeding season; and (iii) colony types according to habitat (natural: island, coastal, inland; and urban: coastal), accounting for sources of potential sampling bias. Lesser Black-backed Gulls had significantly larger ranges than Herring Gulls. During likely active nesting periods (incubation and chick-rearing: ‘true breeding’), marine foraging ranges of Lesser Black-backed Gulls (local mean 19.5 ± 23.1 km, max 175.5 km) were greater than terrestrial ranges (local mean 14.9 ± 15.9 km, max 145.4 km). By contrast, terrestrial ranges were largest for Herring Gulls (terrestrial, 9.1 ± 10.7 km, max 83.8 km; marine, 7.1 ± 8.1 km, max 74.4 km). For terrestrial environments, true breeding foraging ranges of Lesser Black-backed Gulls were smaller than during pre- or post-breeding phases, whereas for Herring Gulls the reverse was true. Marine ranges of both species were smallest during pre-breeding and largest during post-breeding phases. For both species, urban colonies had the smallest foraging range and island colonies some of the largest. Terrestrial and marine foraging ranges were predicted UK-wide based on colony type and breeding phase, highlighting concentrations of foraging range. This study provides more precise foraging range information specific to foraging environment, breeding stage and colony type than has currently been available, and will therefore help to reduce uncertainty in the consenting process for proposed developments as well as in licensing control of wild birds.

动物为后代或自己收集食物走多远是生态学的一个核心组成部分。在鸟类中,“觅食范围”(中心地点和目的地之间的直线距离)被用来评估与人为压力源(如风力发电场)的潜在相互作用。最近的综述总结了英国繁殖海鸟的海洋觅食范围。然而,对于跨越陆地/海洋分界线的物种(一些海鸥,燕鸥,锯鸟和潜水员),陆地范围是未知的,正如对范围如何因繁殖群体及其周围栖息地而变化的理解一样。利用全球定位卫星(GPS)遥测技术,对黑背小鸥(Larus fuscus)和银鸥(Herring Gulls . argentatus)分别在11个和7个英国繁殖地的活动进行了12年的研究。我们使用一般混合效应模型研究了在陆地和海洋环境下觅食范围的变化;(ii)繁殖季节的阶段;(iii)根据栖息地划分的群体类型(自然:岛屿、沿海、内陆;城市:沿海),考虑到潜在抽样偏差的来源。小黑背鸥的活动范围明显大于银鸥。在可能的筑巢活跃期(孵化和育雏:“真正的繁殖”),小黑背鸥的海洋觅食范围(当地平均19.5±23.1公里,最大175.5公里)大于陆地觅食范围(当地平均14.9±15.9公里,最大145.4公里)。青鸥的活动范围以陆地最大(陆地9.1±10.7 km,最大83.8 km;海洋7.1±8.1 km,最大74.4 km)。在陆地环境中,小黑背鸥的真实繁殖觅食范围比繁殖前和繁殖后的范围要小,而银鸥的情况正好相反。两个物种的海洋分布范围在繁殖前最小,在繁殖后最大。对于这两个物种来说,城市种群的觅食范围最小,而岛屿种群的觅食范围最大。根据种群类型和繁殖阶段预测了全英国的陆地和海洋觅食范围,突出了觅食范围的集中。这项研究提供了比目前更精确的觅食范围信息,具体到觅食环境、繁殖阶段和种群类型,因此将有助于减少批准拟议发展过程中的不确定性,以及野生鸟类的许可证控制。
{"title":"Breeding and foraging habitat are important in determining foraging ranges of sympatric generalist species","authors":"Chris B. Thaxter,&nbsp;Lucy R. Quinn,&nbsp;Philip W. Atkinson,&nbsp;Katherine A. Booth Jones,&nbsp;Nigel A. Clark,&nbsp;Gary D. Clewley,&nbsp;Ros M. W. Green,&nbsp;Nina J. O'Hanlon,&nbsp;Daniel T. Johnston,&nbsp;Elizabeth A. Masden,&nbsp;Viola H. Ross-Smith,&nbsp;Elspeth L. Sage,&nbsp;Emily Scragg,&nbsp;Rachel C. Taylor,&nbsp;Niall H. K. Burton,&nbsp;Elizabeth M. Humphreys","doi":"10.1111/ibi.13446","DOIUrl":"https://doi.org/10.1111/ibi.13446","url":null,"abstract":"<p>How far animals travel to gather food for offspring or themselves is a central component of ecology. Among birds, the ‘foraging range’ (straight-line distance between a central place and a destination) is used to assess potential interactions with anthropogenic stressors such as wind farms. Recent reviews have summarized marine foraging ranges for UK breeding seabirds. However, for species that span the terrestrial/marine divide (some gulls, terns, sawbills and divers), terrestrial ranges are unknown, as is an understanding of how ranges may vary by breeding colony and their surrounding habitat. Using global positioning satellite (GPS) telemetry, we studied the movements of Lesser Black-backed Gulls <i>Larus fuscus</i> and Herring Gulls <i>L. argentatus</i> from 11 and seven UK breeding colonies, respectively, over 12 years. We investigated the variation in foraging range using general mixed effects models with respect to: (i) terrestrial and marine environments; (ii) stages of the breeding season; and (iii) colony types according to habitat (natural: island, coastal, inland; and urban: coastal), accounting for sources of potential sampling bias. Lesser Black-backed Gulls had significantly larger ranges than Herring Gulls. During likely active nesting periods (incubation and chick-rearing: ‘true breeding’), marine foraging ranges of Lesser Black-backed Gulls (local mean 19.5 ± 23.1 km, max 175.5 km) were greater than terrestrial ranges (local mean 14.9 ± 15.9 km, max 145.4 km). By contrast, terrestrial ranges were largest for Herring Gulls (terrestrial, 9.1 ± 10.7 km, max 83.8 km; marine, 7.1 ± 8.1 km, max 74.4 km). For terrestrial environments, true breeding foraging ranges of Lesser Black-backed Gulls were smaller than during pre- or post-breeding phases, whereas for Herring Gulls the reverse was true. Marine ranges of both species were smallest during pre-breeding and largest during post-breeding phases. For both species, urban colonies had the smallest foraging range and island colonies some of the largest. Terrestrial and marine foraging ranges were predicted UK-wide based on colony type and breeding phase, highlighting concentrations of foraging range. This study provides more precise foraging range information specific to foraging environment, breeding stage and colony type than has currently been available, and will therefore help to reduce uncertainty in the consenting process for proposed developments as well as in licensing control of wild birds.</p>","PeriodicalId":13254,"journal":{"name":"Ibis","volume":"168 1","pages":"259-292"},"PeriodicalIF":2.1,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ibi.13446","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145719692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The potential for climate change to intensify nest-site competition between two sympatric owl species 气候变化可能加剧两种同域猫头鹰之间的巢址竞争
IF 2.1 3区 生物学 Q1 ORNITHOLOGY Pub Date : 2025-09-27 DOI: 10.1111/ibi.13455
Zoltán Schneider, Erika Mátics, Gyula Hoffmann, Miklós Laczi, Gábor Herczeg, Róbert Mátics

Interspecific competition profoundly influences the ecology of species, and climate change is expected to alter the strength of interspecific interactions. Using long-term data from sympatric breeding populations of the Western Barn Owl Tyto alba (hereafter Barn Owl) and the Tawny Owl Strix aluco in southern Hungary, we explored the associations between the owl species' (i) breeding phenology (annual median laying dates) and regional weather components (daily precipitation, temperature minimum and maximum), (ii) temporal trends of median laying dates and the associated weather signals, and (iii) reproductive output (laying date, clutch size, fledgling number) and the co-occurence of the two species in the same nestbox during the same breeding season. In the Barn Owl, breeding onset was negatively associated with daily temperature maximum, and advanced by 2 weeks in the study period, while the Tawny Owl breeding onset did not change. We found that when the two species used the same nestbox, the breeding of Barn Owls (occurring after the Tawny Owl breeding) was delayed by a month, and they produced one more egg and owlet on average, but second clutches were practically absent, compared to cases when no interaction occurred in the same nestbox during the same breeding season. In contrast, when nesting in boxes later occuppied by Barn Owls, the Tawny Owl's breeding started a few days earlier with an increased clutch size, although with no difference in the number of fledglings. Our results suggest that climate change could heighten competition for nest-sites between the two owl species, as the Barn Owl's breeding season has shifted closer to the breeding season of the Tawny Owl through the study period in parallel with rising temperatures.

种间竞争深刻地影响着物种的生态,而气候变化有望改变种间相互作用的强度。利用匈牙利南部西部仓鸮Tyto alba(以下简称仓鸮)和Tawny Owl Strix aluco的同域繁殖种群的长期数据,我们探索了这两种猫头鹰物种的(i)繁殖物候(年平均产蛋日期)与区域天气成分(日降水量、最低和最高温度)之间的关系,(ii)产蛋日期和相关天气信号的时间趋势,以及(iii)繁殖产量(产蛋日期、窝卵数量、产蛋数量和产蛋数量)之间的关系。羽翼数)和两种在同一繁殖季节在同一巢箱内共出现的情况。仓鸮的繁殖开始时间与日最高气温呈负相关,在研究期间提前了2周,而褐鸮的繁殖开始时间没有变化。我们发现,当两个物种使用同一个巢箱时,仓鸮的繁殖(发生在茶色猫头鹰繁殖之后)推迟了一个月,它们平均多产一个蛋和一只小猫头鹰,但与同一繁殖季节在同一巢箱中没有相互作用的情况相比,几乎没有第二窝。相比之下,当在谷仓猫头鹰占据的盒子里筑巢时,茶色猫头鹰的繁殖开始提前几天,虽然雏鸟的数量没有变化,但孵出的蛋数量增加了。我们的研究结果表明,气候变化可能会加剧这两种猫头鹰之间对筑巢地点的竞争,因为在研究期间,谷仓猫头鹰的繁殖季节与茶色猫头鹰的繁殖季节更接近,同时气温上升。
{"title":"The potential for climate change to intensify nest-site competition between two sympatric owl species","authors":"Zoltán Schneider,&nbsp;Erika Mátics,&nbsp;Gyula Hoffmann,&nbsp;Miklós Laczi,&nbsp;Gábor Herczeg,&nbsp;Róbert Mátics","doi":"10.1111/ibi.13455","DOIUrl":"https://doi.org/10.1111/ibi.13455","url":null,"abstract":"<p>Interspecific competition profoundly influences the ecology of species, and climate change is expected to alter the strength of interspecific interactions. Using long-term data from sympatric breeding populations of the Western Barn Owl <i>Tyto alba</i> (hereafter Barn Owl) and the Tawny Owl <i>Strix aluco</i> in southern Hungary, we explored the associations between the owl species' (i) breeding phenology (annual median laying dates) and regional weather components (daily precipitation, temperature minimum and maximum), (ii) temporal trends of median laying dates and the associated weather signals, and (iii) reproductive output (laying date, clutch size, fledgling number) and the co-occurence of the two species in the same nestbox during the same breeding season. In the Barn Owl, breeding onset was negatively associated with daily temperature maximum, and advanced by 2 weeks in the study period, while the Tawny Owl breeding onset did not change. We found that when the two species used the same nestbox, the breeding of Barn Owls (occurring after the Tawny Owl breeding) was delayed by a month, and they produced one more egg and owlet on average, but second clutches were practically absent, compared to cases when no interaction occurred in the same nestbox during the same breeding season. In contrast, when nesting in boxes later occuppied by Barn Owls, the Tawny Owl's breeding started a few days earlier with an increased clutch size, although with no difference in the number of fledglings. Our results suggest that climate change could heighten competition for nest-sites between the two owl species, as the Barn Owl's breeding season has shifted closer to the breeding season of the Tawny Owl through the study period in parallel with rising temperatures.</p>","PeriodicalId":13254,"journal":{"name":"Ibis","volume":"168 1","pages":"230-244"},"PeriodicalIF":2.1,"publicationDate":"2025-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ibi.13455","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145719787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Repopulation of the former breeding range: spatio-temporal patterns and drivers of reproduction in the Peregrine Falcon (Falco peregrinus) population in Hungary 匈牙利游隼(Falco peregrinus)种群前繁殖范围的再种群:时空模式和繁殖驱动因素
IF 2.1 3区 生物学 Q1 ORNITHOLOGY Pub Date : 2025-09-25 DOI: 10.1111/ibi.13448
Mátyás Prommer, János Bagyura, Marc Kéry, Madan K. Oli

The disappearance of the breeding population of Peregrine Falcon Falco peregrinus from Hungary in 1964 is likely to have been caused by extensive agricultural use of organochlorine pesticides. After proving harmful to humans and wildlife, organochlorine pesticides were banned in North America and many European countries, leading to a recovery in Peregrine populations and other raptors in most parts of the world. In Hungary, Peregrines returned as a breeding species in 1997. Using 26 years (1997–2022) of monitoring data, we investigated spatio-temporal patterns in site occupancy and reproductive success during population recovery. We found that: (i) Peregrines initially re-occupied traditional territories in mountainous and forested regions where suitable nest-sites were available on cliffs and in quarries; (ii) the Peregrine population then slowly expanded to lower elevations, predominantly agricultural areas, where they nested in trees and in artificial nest-sites on pylons; (iii) the overall mean (se) probability of successful nesting was 0.713 ± 0.02 and the average brood size (number of young per successful nesting attempt) was 2.56 ± 0.04, with spatial and temporal variation in both measures of reproductive success; (iv) March precipitation had a negative effect on brood size in the wettest region; (v) higher greenness levels in February negatively affected nesting success in the least forested region; and, finally, (vi) Peregrines breeding in artificial nestboxes on pylons had higher nesting success than pairs breeding in natural nests. Our results suggest that the general recovery pattern of Hungarian Peregrines was similar to those observed in other parts of Europe, but also highlight spatial variation in demographic parameters.

1964年匈牙利游隼(Peregrine Falcon peregrinus)繁殖种群的消失很可能是由于农业广泛使用有机氯农药造成的。在证明对人类和野生动物有害之后,北美和许多欧洲国家禁止了有机氯农药,导致世界大部分地区游隼和其他猛禽的数量恢复。1997年,游隼作为繁殖物种返回匈牙利。利用26年(1997-2022)的监测数据,研究了种群恢复过程中用地占用和繁殖成功率的时空格局。我们发现:(i)游隼最初重新占领了山区和森林地区的传统领土,这些地区在悬崖和采石场上有合适的筑巢地点;(ii)游隼的数量随后缓慢扩展到低海拔地区,主要是农业地区,它们在树上和塔塔上的人工筑巢点筑巢;(iii)总体平均筑巢成功率(se)为0.713±0.02,平均窝仔数(每次成功筑巢的雏鸟数)为2.56±0.04,两项指标均存在时空差异;(四)3月降水对最湿地区的产卵量有负面影响;(v)二月较高的绿化程度对最少森林地区的筑巢成功率有负面影响;最后,(vi)在塔上的人工巢箱中繁殖的游隼的筑巢成功率高于在自然巢中成对繁殖的游隼。研究结果表明,匈牙利游隼的总体恢复模式与欧洲其他地区相似,但也突出了人口参数的空间差异。
{"title":"Repopulation of the former breeding range: spatio-temporal patterns and drivers of reproduction in the Peregrine Falcon (Falco peregrinus) population in Hungary","authors":"Mátyás Prommer,&nbsp;János Bagyura,&nbsp;Marc Kéry,&nbsp;Madan K. Oli","doi":"10.1111/ibi.13448","DOIUrl":"https://doi.org/10.1111/ibi.13448","url":null,"abstract":"<p>The disappearance of the breeding population of Peregrine Falcon <i>Falco peregrinus</i> from Hungary in 1964 is likely to have been caused by extensive agricultural use of organochlorine pesticides. After proving harmful to humans and wildlife, organochlorine pesticides were banned in North America and many European countries, leading to a recovery in Peregrine populations and other raptors in most parts of the world. In Hungary, Peregrines returned as a breeding species in 1997. Using 26 years (1997–2022) of monitoring data, we investigated spatio-temporal patterns in site occupancy and reproductive success during population recovery. We found that: (i) Peregrines initially re-occupied traditional territories in mountainous and forested regions where suitable nest-sites were available on cliffs and in quarries; (ii) the Peregrine population then slowly expanded to lower elevations, predominantly agricultural areas, where they nested in trees and in artificial nest-sites on pylons; (iii) the overall mean (se) probability of successful nesting was 0.713 ± 0.02 and the average brood size (number of young per successful nesting attempt) was 2.56 ± 0.04, with spatial and temporal variation in both measures of reproductive success; (iv) March precipitation had a negative effect on brood size in the wettest region; (v) higher greenness levels in February negatively affected nesting success in the least forested region; and, finally, (vi) Peregrines breeding in artificial nestboxes on pylons had higher nesting success than pairs breeding in natural nests. Our results suggest that the general recovery pattern of Hungarian Peregrines was similar to those observed in other parts of Europe, but also highlight spatial variation in demographic parameters.</p>","PeriodicalId":13254,"journal":{"name":"Ibis","volume":"168 1","pages":"63-78"},"PeriodicalIF":2.1,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145730484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of a previous high pathogenicity avian influenza (HPAIV) infection on the breeding success of Northern Gannets (Morus bassanus) 先前高致病性禽流感(HPAIV)感染对北方塘鹅(Morus bassanus)繁殖成功的影响
IF 2.1 3区 生物学 Q1 ORNITHOLOGY Pub Date : 2025-09-24 DOI: 10.1111/ibi.13449
Sue Lewis, Emily Burton, James Butcher, Ian Cleasby, Amy King, Emma Marriott, Dave O'Hara, Maggie Sheddan, Mal Watson, Saskia Wischnewski, Lucy Wright, Sarah Wanless, Jude V. Lane

Highly pathogenic avian influenza (HPAIV) caused widespread mortality and breeding failure among many wild, avian populations in Europe and North America in 2021–2023, but most populations exhibited a marked reduction in mortality in the year following an outbreak, suggesting that surviving individuals may have developed immunity. A critical mechanism for population resilience is whether individuals that have survived the disease show reduced breeding success because of the potential costs associated with recovery, notably elevated immune defence. We found that, at two UK colonies, the breeding success of Northern Gannets Morus bassanus with black eyes (an indicator of past exposure to HPAIV) was similar to those with normal blue eyes in the year following a severe disease outbreak, suggesting that population recovery may not be hampered by lower reproductive performance of recovered individuals compared to those that were unexposed. However, breeding success, irrespective of past exposure, was lower than the long-term average, suggesting potential carry-over effects on all individuals from the extensive disruption caused by the epidemic the previous year.

2021-2023年,高致病性禽流感(HPAIV)在欧洲和北美的许多野生鸟类种群中造成了广泛的死亡和繁殖失败,但大多数种群在疫情爆发后的一年内死亡率显著下降,这表明幸存的个体可能已经产生了免疫力。种群恢复力的一个关键机制是,由于与恢复相关的潜在成本,特别是免疫防御能力的提高,存活下来的个体是否表现出繁殖成功率降低。我们发现,在两个英国殖民地,在严重疾病爆发后的一年中,黑眼睛(过去暴露于HPAIV的指标)的北方塘鹅Morus bassanus的繁殖成功率与正常蓝眼睛的繁殖成功率相似,这表明与未暴露的个体相比,恢复个体的繁殖性能较低可能不会阻碍种群恢复。然而,无论过去的接触情况如何,繁殖成功率都低于长期平均水平,这表明前一年疫情造成的广泛破坏可能对所有个体产生后续影响。
{"title":"Effect of a previous high pathogenicity avian influenza (HPAIV) infection on the breeding success of Northern Gannets (Morus bassanus)","authors":"Sue Lewis,&nbsp;Emily Burton,&nbsp;James Butcher,&nbsp;Ian Cleasby,&nbsp;Amy King,&nbsp;Emma Marriott,&nbsp;Dave O'Hara,&nbsp;Maggie Sheddan,&nbsp;Mal Watson,&nbsp;Saskia Wischnewski,&nbsp;Lucy Wright,&nbsp;Sarah Wanless,&nbsp;Jude V. Lane","doi":"10.1111/ibi.13449","DOIUrl":"https://doi.org/10.1111/ibi.13449","url":null,"abstract":"<p>Highly pathogenic avian influenza (HPAIV) caused widespread mortality and breeding failure among many wild, avian populations in Europe and North America in 2021–2023, but most populations exhibited a marked reduction in mortality in the year following an outbreak, suggesting that surviving individuals may have developed immunity. A critical mechanism for population resilience is whether individuals that have survived the disease show reduced breeding success because of the potential costs associated with recovery, notably elevated immune defence. We found that, at two UK colonies, the breeding success of Northern Gannets <i>Morus bassanus</i> with black eyes (an indicator of past exposure to HPAIV) was similar to those with normal blue eyes in the year following a severe disease outbreak, suggesting that population recovery may not be hampered by lower reproductive performance of recovered individuals compared to those that were unexposed. However, breeding success, irrespective of past exposure, was lower than the long-term average, suggesting potential carry-over effects on all individuals from the extensive disruption caused by the epidemic the previous year.</p>","PeriodicalId":13254,"journal":{"name":"Ibis","volume":"168 1","pages":"361-368"},"PeriodicalIF":2.1,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ibi.13449","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145719520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Using satellite imagery to map potential colonies of Rüppell's vultures (Gyps rueppelli) in Central and East Africa 利用卫星图像绘制中非和东非r<s:1>佩尔秃鹫(Gyps rueppelli)的潜在殖民地
IF 2.1 3区 生物学 Q1 ORNITHOLOGY Pub Date : 2025-09-21 DOI: 10.1111/ibi.13454
Ivaylo D. Angelov, Dobromir Dobrev, Megan J. Claase, J. Michael Fay, Marc de Bont, Evan R. Buechley

We used Google Earth imagery to remotely map 263 potential and confirmed breeding colonies of the Critically Endangered Rüppell's Vulture in seven countries of East and Central Africa. The main aggregations were found in: central and east-central Chad and west and north Darfur in Sudan; south Kordofan state in Sudan; east Sudan and western Eritrea; and southern and southeastern South Sudan. This is the first study to use satellite data to map the breeding distribution of a bird of prey in a large part of its global range. The survey provides guidance for future field research that could seek to verify and monitor the status of these important breeding colonies for a Critically Endangered species.

我们使用谷歌地球图像远程绘制了位于东非和中非7个国家的263个极度濒危的帕尔秃鹫(rppell’s Vulture)潜在和已确认的繁殖地。主要集中在:乍得中部和中东部以及苏丹达尔富尔西部和北部;苏丹南科尔多凡州;东苏丹和西厄立特里亚;以及南苏丹南部和东南部。这是第一次利用卫星数据绘制猛禽在其全球大部分范围内的繁殖分布图。这项调查为未来的实地研究提供了指导,这些研究可以寻求核实和监测这些重要的极危物种繁殖地的状况。
{"title":"Using satellite imagery to map potential colonies of Rüppell's vultures (Gyps rueppelli) in Central and East Africa","authors":"Ivaylo D. Angelov,&nbsp;Dobromir Dobrev,&nbsp;Megan J. Claase,&nbsp;J. Michael Fay,&nbsp;Marc de Bont,&nbsp;Evan R. Buechley","doi":"10.1111/ibi.13454","DOIUrl":"https://doi.org/10.1111/ibi.13454","url":null,"abstract":"<p>We used Google Earth imagery to remotely map 263 potential and confirmed breeding colonies of the Critically Endangered Rüppell's Vulture in seven countries of East and Central Africa. The main aggregations were found in: central and east-central Chad and west and north Darfur in Sudan; south Kordofan state in Sudan; east Sudan and western Eritrea; and southern and southeastern South Sudan. This is the first study to use satellite data to map the breeding distribution of a bird of prey in a large part of its global range. The survey provides guidance for future field research that could seek to verify and monitor the status of these important breeding colonies for a Critically Endangered species.</p>","PeriodicalId":13254,"journal":{"name":"Ibis","volume":"168 1","pages":"369-376"},"PeriodicalIF":2.1,"publicationDate":"2025-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145719717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Acknowledgement of Reviewers 审稿人致谢
IF 2.1 3区 生物学 Q1 ORNITHOLOGY Pub Date : 2025-09-20 DOI: 10.1111/ibi.13453

The Editors and Associate Editors of IBIS depend heavily on the expertise of independent reviewers. We thank our colleagues for their contributions. Their expertise and constructive criticism ensures the highest standards are maintained. The following served as referees during the period 1 July 2024, to 30 June 2025.

Goijman, Andrea

Aarif, KM

Adamík, Peter

Aguillon, Stepfanie

Alexey, Opaev

Almasi, Bettina

Angelier, Frederic

Arct, Aneta

Arroyo, Iñigo

Assandri, Giacomo

Avilés, Jesús

Baguette, Michel

Ballentine, Barbara

Barba, Emilio

Barve, Sahas

Basile, Marco

Batisteli, Augusto

Bayne, Erin

Bernat-Ponce, Edgar

Berr, Tristan

Beskades, Vedat

Best, Julia

Biffi, Sofia

Birkhead, Tim

Blomqvist, Donald

Bocher, Pierrick

Bodey, Thomas

Border, Jennifer

Borger, Mirjam

Bouchri, Haytem

Bradfer-Lawrence, Tom

Brumm, Henrik

Budka, Michal

Bulla, Martin

Burger, Claudia

Burgess, Malcolm

Burton, Niall

Buxton, Rachel

Camphuysen, C.

Capilla-Lasheras, Pablo

Carlson, Nora

Carneiro, Camilo

Cevenini, Devon

Champagnon, Jocelyn

Chibesa, Moses

Childers, Jackie

Clarke, Jennifer

Cohen, Jonathan

Collar, Nigel

Colombo, Martín Alejandro

Coppinger, Brittany

Crates, Ross

Cuervo, Andrés M.

De la Hera, I

Dehnhard, Nina

Diamond, Tony

Dingle, Caroline

Dobney , Sarah

Dunning, Jamie

Duriez, olivier

Edney, Alice

Eens, Marcel

Efrat, Ron

Einarsson, Árni

Evans, Karl

Falk, Knud

Fandos, Guillermo

Fargevieille, Amélie

Farras, Kevin

Fasola, Mauro

Fattorini, Niccolo

Favaro, Livio

Ferreira, André C.

Fijn, Ruben C.

Flack, Andrea

Fleishman, Abram

Flesch, Elizabeth

Foote, Jenn

Francisco, Mercival

Furness, Robert

Gagliardo, Anna

Gameiro , João

García-Campa, Jorge

Geen, Graham

Gill, Robert

Gillies, Natasha

Gilliland, Scott

Grabarczyk, Erin

Green, Andy

Griffith, Simon

Guillemain, Matthieu

Gunawardena, Medhisha

Hammer, Sjúrður

Hampton, Stephen

Hartley, Ian

Healy, Susan

Heintz, Anne-Caroline

Hewson, Chris

Hinke, Jefferson

Hird, Sarah

Hofmeister, Natalie R.

Horrocks, Nicholas

Hughes, Robert

Hung, Chih-Ming

Hunt, David

Huryne, Eugene

Inigo-Elias, Eduardo

Jähnig, Susanne

Jankowski, Jill

Jaramillo, Alvaro

Jedlikowski, Jan

Jiang, Aiwu

Jiménez, Rosa Alicia

Joel, Yitmwa

Johnson, Jeff

Joseph, Leo

Karell, Patrick

Kaur, Jasmeen

Kempenaers, Bart

Kent, Cody

King, David

Klinck, Holger

Knight, E

IBIS的编辑和副编辑严重依赖独立审稿人的专业知识。我们感谢同事们的贡献。他们的专业知识和建设性的批评确保了最高标准的维持。以下人员在2024年7月1日至2025年6月30日期间担任裁判员。戈伊曼、安德烈·阿里夫、KMAdamík、彼得·阿吉隆、斯特凡尼·阿列克谢、帕奥瓦尔·马西、贝蒂娜·安吉利耶、弗雷德里克·阿卡特、阿尼塔·阿罗约、IñigoAssandri、贾科莫·阿维尔·萨哈斯·巴希尔、马尔科巴斯蒂利、奥古斯特·巴恩、埃里恩·伯纳特-庞塞、埃德加·伯尔、特里斯坦·贝斯卡兹、韦德·贝斯特、朱莉·阿菲菲、索菲亚·伯克黑德、蒂姆·布隆奎斯特、唐纳德·波切尔、皮里克·博迪、托马斯·博德、詹妮弗·伯格、米jambouchri、海因特·布拉德·劳伦斯、汤姆·布鲁姆、亨利克·布德卡、迈克尔·布拉、马丁·伯格、克劳迪娅·伯格斯、马尔科姆·伯顿、尼尔·巴克斯顿、雷切尔·坎弗森、c·卡皮拉-拉舍拉斯、帕布罗·卡尔森、诺·卡内罗、卡米洛·奥塞维尼、德文·尚皮诺、乔斯林·奇贝萨、摩西·蔡尔德斯、杰克·克拉克、詹妮弗·科恩、乔纳森·科勒、奈格尔·科伦博、亚历山大·科平格、布列塔尼·克拉特斯、罗斯·库尔沃、安德列斯·姆·德拉赫拉、埃德哈德、尼娜·戴蒙、托尼·丁格、卡罗琳·多布尼、萨拉·邓宁、杰米·杜雷兹、奥利维尔·埃德尼、阿里斯金斯、马尔·塞弗拉特、罗内纳松、ÁrniEvans、卡尔·福尔克、克努德·凡多斯、吉列尔莫·法格维耶、阿莫西·法拉斯、凯文·法索拉、莫罗·法托里尼、尼科洛·法瓦罗、利维奥·费雷拉、安德烈·弗莱什曼、艾布拉姆·弗莱什、伊丽莎白·福特、珍妮·弗朗西斯科、默斯瓦尔·弗内斯、罗伯特·格里亚多、安娜·梅梅罗、JoãoGarcía-Campa、乔格·金、格雷厄姆·吉尔、罗伯特·吉利斯、娜塔莎·吉利兰、斯科特·格拉巴齐克、格林、安迪·格里菲斯、西蒙·吉列曼、马蒂厄·古纳瓦迪纳、梅迪夏·哈默、SjúrðurHampton、斯蒂芬·哈特利、伊恩·希利、苏珊·海因茨、安妮-卡罗琳·休森、克里斯辛克、杰斐逊·希尔德、萨拉·霍夫迈斯特、娜塔莉·霍罗克斯、尼古拉斯·休斯、罗伯特·通、奇明亨特、大卫·胡林、尤金·尼戈·埃利亚斯、EduardoJähnig、苏珊娜·扬科夫斯基、吉尔·哈拉米洛、阿尔瓦罗·耶德利科夫斯基、詹江、艾乌·吉米·萨梅内斯、罗莎·阿里恰乔尔、伊特姆·约翰逊、杰夫·约瑟夫、利奥卡雷尔、帕特里克·考尔、贾斯梅·肯潘纳斯、巴特·肯特、科迪金、大卫·克林克、霍尔格·奈特、埃利·科帕奇、阿里恰科斯基、雅各布·权、恩比拉克兰、罗伯特·拉希里、苏蒂尔·塔莱奥罗、保罗·兰布、朱丽叶·兰伯特、夏洛特·ameris、托马斯·兰克、大卫·拉森、奥利·拉托、金·拉夫纳、伊扎尔·勒·古尔、帕斯卡里纳尔·潘鲁、尼尔·李、亚历山大·李、林健强、霍传洛德、胡洛佩斯·鲁尔、伊莎贝尔·洛、吕金红、雷林奇、希瑟·马赫、凯瑟琳·马文林、马克·曼吉尼、吉塞尔·马奎斯、保罗·马歇尔、杰森·马丁、格雷厄姆·马尔丁卡、RafałMasoero、朱利亚·梅森、尼古拉斯·麦克卢尔、克里斯托弗·麦克唐纳、格兰特·麦金农、艾米丽·卡伦、詹姆斯·麦克雷、苏·威廉姆斯、斯科特·门纳拉特、阿德尔·梅特卡夫、奥利弗·米勒、爱德华·米拉·马丁斯、布鲁诺·赫兰德·米兰达、埃弗顿·米尔斯基、帕维尔·蒙克里夫、AndreMonti, FlavioMoon, HannahMorelli, FedericoMorganti, michelangelo omorozov, NikolayMurphy, MichaelMurphy, TroyMusher, Lukas J.Nemeth, ErwinNewton, IanNewton, StephenNightingale, JoshuaNiven, HollyO 'Hanlon, Nina J.Olah, AshleyOlesen, JensOng'ondo, FrankOosthuizen, ChrisOppel, steffenensiejuk, TomaszOst, MarkusOttenburghs, JenteOttinger, Mary annpapprocki, NeilPatchett, RobertPatten, michaelperktaza, UtkuPiersma, TheunisPilastro, AndreaPinaud, DavidPoje, ColleenPosso, SergioPotti, JaimePottier,JonasPöysä, hannerdervand, Jean-NicolasPyszko, PetrRajan, SamyukthaReboreda, JuanReichard, Dustin G.Reino, LuisRhinehart, tessarrichardson, james rivera - gutiereracriz, HectorRobertson, gregret - gutteridge, HollyRoulin, alexandrrubolini, diego luiz, MateoSánchez, Natalie v.s adercock, Brett KSangster, GeorgeSantiago-Alarcon, DiegoSantos, CarlosSaunders, DenisSauve, DrewScharf, HannahSchoech, stephansenentii - cardoso, guilhermesoane, javierShuai, singer, DavidSmith, PaulSöderqvist,PärStenhouse、伊万斯·斯蒂汉姆、托马斯·斯蒂宁、埃里克·斯特迪、克里斯托弗·苏迪卡、乔安娜·苏马基、阿德里安·萨顿、麦迪逊·斯瓦钦斯卡、阿涅斯·泰勒、格雷姆·特劳伯、朱利安·瑟里恩、j·汤普森、林迪·蒂罗齐、彼得·托布雷、英格恩·特拉巴、朱利安·特伦卡、阿尔弗·文森·特里亚诺斯基、彼得·特鲁里奥斯、维森特万Merriënboer、巴特·范·威尔根伯格、史蒂文·凡·斯蒂尔特、沃特·文森特、斯蒂芬·沃尔特斯、埃里克·沃德、迈克尔·沃灵顿、MiyakoWatson、大卫·韦格森、埃瓦·韦斯特尼特、戴夫·惠特克罗夫特、大卫·威尔金森、NicholasWilliams, HeatherWilson, MarkWojczulanis-Jakubas, KatarzynaWood, ConnorWood, KevinXia,肖灿伟,洪涛山口,NoriyukiYom-Tov, YoramZabala, jabuzhang,赵强,朱青山,LifengZielonka, Natalia B.Zsebők, Sándor
{"title":"Acknowledgement of Reviewers","authors":"","doi":"10.1111/ibi.13453","DOIUrl":"https://doi.org/10.1111/ibi.13453","url":null,"abstract":"<p>The Editors and Associate Editors of IBIS depend heavily on the expertise of independent reviewers. We thank our colleagues for their contributions. Their expertise and constructive criticism ensures the highest standards are maintained. The following served as referees during the period 1 July 2024, to 30 June 2025.</p><p>Goijman, Andrea</p><p>Aarif, KM</p><p>Adamík, Peter</p><p>Aguillon, Stepfanie</p><p>Alexey, Opaev</p><p>Almasi, Bettina</p><p>Angelier, Frederic</p><p>Arct, Aneta</p><p>Arroyo, Iñigo</p><p>Assandri, Giacomo</p><p>Avilés, Jesús</p><p>Baguette, Michel</p><p>Ballentine, Barbara</p><p>Barba, Emilio</p><p>Barve, Sahas</p><p>Basile, Marco</p><p>Batisteli, Augusto</p><p>Bayne, Erin</p><p>Bernat-Ponce, Edgar</p><p>Berr, Tristan</p><p>Beskades, Vedat</p><p>Best, Julia</p><p>Biffi, Sofia</p><p>Birkhead, Tim</p><p>Blomqvist, Donald</p><p>Bocher, Pierrick</p><p>Bodey, Thomas</p><p>Border, Jennifer</p><p>Borger, Mirjam</p><p>Bouchri, Haytem</p><p>Bradfer-Lawrence, Tom</p><p>Brumm, Henrik</p><p>Budka, Michal</p><p>Bulla, Martin</p><p>Burger, Claudia</p><p>Burgess, Malcolm</p><p>Burton, Niall</p><p>Buxton, Rachel</p><p>Camphuysen, C.</p><p>Capilla-Lasheras, Pablo</p><p>Carlson, Nora</p><p>Carneiro, Camilo</p><p>Cevenini, Devon</p><p>Champagnon, Jocelyn</p><p>Chibesa, Moses</p><p>Childers, Jackie</p><p>Clarke, Jennifer</p><p>Cohen, Jonathan</p><p>Collar, Nigel</p><p>Colombo, Martín Alejandro</p><p>Coppinger, Brittany</p><p>Crates, Ross</p><p>Cuervo, Andrés M.</p><p>De la Hera, I</p><p>Dehnhard, Nina</p><p>Diamond, Tony</p><p>Dingle, Caroline</p><p>Dobney , Sarah</p><p>Dunning, Jamie</p><p>Duriez, olivier</p><p>Edney, Alice</p><p>Eens, Marcel</p><p>Efrat, Ron</p><p>Einarsson, Árni</p><p>Evans, Karl</p><p>Falk, Knud</p><p>Fandos, Guillermo</p><p>Fargevieille, Amélie</p><p>Farras, Kevin</p><p>Fasola, Mauro</p><p>Fattorini, Niccolo</p><p>Favaro, Livio</p><p>Ferreira, André C.</p><p>Fijn, Ruben C.</p><p>Flack, Andrea</p><p>Fleishman, Abram</p><p>Flesch, Elizabeth</p><p>Foote, Jenn</p><p>Francisco, Mercival</p><p>Furness, Robert</p><p>Gagliardo, Anna</p><p>Gameiro , João</p><p>García-Campa, Jorge</p><p>Geen, Graham</p><p>Gill, Robert</p><p>Gillies, Natasha</p><p>Gilliland, Scott</p><p>Grabarczyk, Erin</p><p>Green, Andy</p><p>Griffith, Simon</p><p>Guillemain, Matthieu</p><p>Gunawardena, Medhisha</p><p>Hammer, Sjúrður</p><p>Hampton, Stephen</p><p>Hartley, Ian</p><p>Healy, Susan</p><p>Heintz, Anne-Caroline</p><p>Hewson, Chris</p><p>Hinke, Jefferson</p><p>Hird, Sarah</p><p>Hofmeister, Natalie R.</p><p>Horrocks, Nicholas</p><p>Hughes, Robert</p><p>Hung, Chih-Ming</p><p>Hunt, David</p><p>Huryne, Eugene</p><p>Inigo-Elias, Eduardo</p><p>Jähnig, Susanne</p><p>Jankowski, Jill</p><p>Jaramillo, Alvaro</p><p>Jedlikowski, Jan</p><p>Jiang, Aiwu</p><p>Jiménez, Rosa Alicia</p><p>Joel, Yitmwa</p><p>Johnson, Jeff</p><p>Joseph, Leo</p><p>Karell, Patrick</p><p>Kaur, Jasmeen</p><p>Kempenaers, Bart</p><p>Kent, Cody</p><p>King, David</p><p>Klinck, Holger</p><p>Knight, E","PeriodicalId":13254,"journal":{"name":"Ibis","volume":"167 4","pages":"1125-1126"},"PeriodicalIF":2.1,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ibi.13453","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145102118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Neolithic rock engraving apparently showing a Great Auk being captured 一个新石器时代的岩石雕刻,显然是一只大海雀被捕获
IF 2.1 3区 生物学 Q1 ORNITHOLOGY Pub Date : 2025-09-16 DOI: 10.1111/ibi.13452
Tim R. Birkhead, Robert Montgomerie

We evaluate whether a Neolithic engraved rock image at the Alta archaeological site in Finnmark, Norway – of a bird being held by a person – represents a Great Auk Pinguinus impennis. There are several thousand engraved animal figures at Alta, created between 5000 and 2000 years ago, in various hunting panoramas. Of these images, 24 represent aquatic birds, including four others that might also be Great Auks. Based on the size of the bird relative to the person holding it, the size and shape of the beak, wings and webbed feet, and comparisons with some other bird images at Alta, we conclude that it is likely that this one does represent a Great Auk.

我们评估了挪威芬马克阿尔塔考古遗址的新石器时代雕刻的岩石图像——一只鸟被一个人拿着——是否代表一只大海雀。在阿尔塔有几千个雕刻的动物雕像,创作于5000到2000年前,在各种狩猎全景中。在这些图像中,有24张是水鸟,包括另外4张可能也是大海雀的图像。根据这只鸟相对于拿着它的人的大小、喙、翅膀和蹼足的大小和形状,以及与阿尔塔其他鸟类图像的比较,我们得出结论,这只鸟很可能确实代表了一只大海雀。
{"title":"A Neolithic rock engraving apparently showing a Great Auk being captured","authors":"Tim R. Birkhead,&nbsp;Robert Montgomerie","doi":"10.1111/ibi.13452","DOIUrl":"https://doi.org/10.1111/ibi.13452","url":null,"abstract":"<p>We evaluate whether a Neolithic engraved rock image at the Alta archaeological site in Finnmark, Norway – of a bird being held by a person – represents a Great Auk <i>Pinguinus impennis.</i> There are several thousand engraved animal figures at Alta, created between 5000 and 2000 years ago, in various hunting panoramas. Of these images, 24 represent aquatic birds, including four others that might also be Great Auks. Based on the size of the bird relative to the person holding it, the size and shape of the beak, wings and webbed feet, and comparisons with some other bird images at Alta, we conclude that it is likely that this one does represent a Great Auk.</p>","PeriodicalId":13254,"journal":{"name":"Ibis","volume":"168 1","pages":"377-382"},"PeriodicalIF":2.1,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ibi.13452","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145719581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Source amplitude increases with body-mass across avian genera 在禽类属中,源振幅随体重增加而增加
IF 2.1 3区 生物学 Q1 ORNITHOLOGY Pub Date : 2025-09-14 DOI: 10.1111/ibi.13447
Morgan A. Ziegenhorn, Richard B. Lanctot, Stephen C. Brown, Sarah T. Saalfeld, Paul A. Smith, Nicolas Lecomte

Amplitude, or intensity, of sound is a fundamental characteristic of acoustic communication, with relevance in many scientific fields. The amplitude of an animal's acoustic signal at its source (‘source amplitude’) may be particularly relevant in the field of acoustic allometry, where relationships between species' physical and acoustic features (e.g. dominant frequency) have been well-established across taxa. However, despite their potential scientific value, records and studies of source amplitude remain remarkably scarce for avian species. Here we present novel estimates of source amplitude (range and median) for 17 species of Arctic-breeding birds, derived from measurements made in Utqiaġvik, Alaska, during June 2024. We found a strong positive correlation between body-mass and source amplitude in these data via Markov chain Monte Carlo multivariate generalized linear mixed models (MCMCglmms). This relationship was influenced by both phylogenetic and individual identity. In contrast, effects from environmental factors and measurement characteristics were minimal. Our work represents one of few studies that explicitly model an interspecific relationship between source amplitude and body mass across avian genera. We hope that this study will spur further investigations into avian source amplitude and its relationship to morphological and life-history features for species in the Arctic and elsewhere.

声音的振幅或强度是声音通信的基本特征,与许多科学领域有关。动物声信号在其源处的振幅(“源振幅”)可能与声异速学领域特别相关,在该领域,物种的物理特征和声学特征(例如主导频率)之间的关系已经在各个分类群中得到了证实。然而,尽管它们具有潜在的科学价值,但鸟类物种源振幅的记录和研究仍然非常缺乏。在这里,我们提出了对17种北极繁殖鸟类的源振幅(范围和中位数)的新估计,这些估计来自于2024年6月在阿拉斯加Utqiaġvik进行的测量。我们通过马尔可夫链蒙特卡罗多元广义线性混合模型(MCMCglmms)在这些数据中发现了身体质量与源振幅之间强烈的正相关关系。这种关系受到系统发育和个体认同的双重影响。相比之下,环境因素和测量特性的影响很小。我们的工作是为数不多的明确模拟禽类属源振幅和体重之间种间关系的研究之一。我们希望这项研究能够促进对北极和其他地区鸟类源振幅及其与物种形态和生活史特征的关系的进一步研究。
{"title":"Source amplitude increases with body-mass across avian genera","authors":"Morgan A. Ziegenhorn,&nbsp;Richard B. Lanctot,&nbsp;Stephen C. Brown,&nbsp;Sarah T. Saalfeld,&nbsp;Paul A. Smith,&nbsp;Nicolas Lecomte","doi":"10.1111/ibi.13447","DOIUrl":"https://doi.org/10.1111/ibi.13447","url":null,"abstract":"<p>Amplitude, or intensity, of sound is a fundamental characteristic of acoustic communication, with relevance in many scientific fields. The amplitude of an animal's acoustic signal at its source (‘source amplitude’) may be particularly relevant in the field of acoustic allometry, where relationships between species' physical and acoustic features (e.g. dominant frequency) have been well-established across taxa. However, despite their potential scientific value, records and studies of source amplitude remain remarkably scarce for avian species. Here we present novel estimates of source amplitude (range and median) for 17 species of Arctic-breeding birds, derived from measurements made in Utqiaġvik, Alaska, during June 2024. We found a strong positive correlation between body-mass and source amplitude in these data via Markov chain Monte Carlo multivariate generalized linear mixed models (MCMCglmms). This relationship was influenced by both phylogenetic and individual identity. In contrast, effects from environmental factors and measurement characteristics were minimal. Our work represents one of few studies that explicitly model an interspecific relationship between source amplitude and body mass across avian genera. We hope that this study will spur further investigations into avian source amplitude and its relationship to morphological and life-history features for species in the Arctic and elsewhere.</p>","PeriodicalId":13254,"journal":{"name":"Ibis","volume":"168 1","pages":"127-139"},"PeriodicalIF":2.1,"publicationDate":"2025-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ibi.13447","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145730388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wetland location and captive breeding influence trans-Mediterranean movements in the endangered Marbled Duck (Marmaronetta angustirostris) 湿地位置和圈养繁殖对濒危大理石鸭跨地中海迁徙的影响
IF 2.1 3区 生物学 Q1 ORNITHOLOGY Pub Date : 2025-09-11 DOI: 10.1111/ibi.13442
Irene Pacheco-Guardiola, Juan Manuel Pérez-García, Óscar Aldeguer, Marcos Ferrández, Claudine de le Court, Juan Antonio Gómez, Francisco Botella

Waterbirds distributed in semi-arid and arid regions seem to have adapted their behaviour to the availability and seasonality of wetlands, increasing their mobility range. The Marbled Duck Marmaronetta angustirostris is a threatened waterbird that shows trans-Mediterranean movements but these are poorly known. In a conservation effort, there are two captive-breeding programmes in Spain. Each year captive-bred individuals are released in two main sites: Doñana and surroundings (southwest Spain) and the southern wetlands of Alicante (southeast Spain). In 2018, a GPS/GSM tagging project was launched to monitor the species to facilitate an understanding of their movement patterns and to assess the effects of captive breeding on the adaptation of individuals to the wild. This study presents the first description of long-distance movements between North Africa and Europe by Marbled Ducks. Of the 144 GPS-tagged individuals, only 18 crossed into Africa, the majority were wild-born (n = 14) and only four were from the captive breeding programme, indicating a strong effect of origin on the likelihood of undertaking long-distance movements. Our results showed that long-distance movements were not restricted to the wintering season but also occurred during the breeding season, showing a clear temporal pattern between the two main release/tagging sites: individuals from the southwest crossed mainly in April, whereas those from the southeast did so mainly in October. Birds showed heterogeneous movements at the individual scale (cumulative daily distance moved ranged from 0.1 to 447 km/day). Marbled Ducks performed significantly longer daily displacements during their time in North Africa than those observed in Spain. These findings reveal the complexity and flexibility of movement strategies in this nomadic species and suggest that long-distance movements are individual responses to environmental conditions and wetland availability. Furthermore, we discuss possible explanations for the observed differences in long-distance movements between wild-born and captive-bred individuals. These insights into the seasonal patterns and origin-related differences in long-distance movements are crucial for informing more effective conservation strategies for this endangered species.

分布在半干旱和干旱地区的水鸟似乎已经适应了湿地的可用性和季节性,增加了它们的流动范围。大理石纹鸭Marmaronetta angustirostris是一种濒临灭绝的水鸟,它们会跨地中海迁徙,但人们对它们知之甚少。在保护方面,西班牙有两个圈养繁殖项目。每年圈养繁殖的个体被放生在两个主要地点:Doñana及其周边地区(西班牙西南部)和阿利坎特南部湿地(西班牙东南部)。2018年,启动了一个GPS/GSM标记项目,以监测该物种,以促进对其运动模式的了解,并评估圈养繁殖对个体适应野外环境的影响。这项研究首次描述了大理石纹鸭在北非和欧洲之间的长距离运动。在144个有gps标记的个体中,只有18个进入了非洲,大多数是野生出生的(n = 14),只有4个来自圈养繁殖计划,这表明原产地对进行长途迁徙的可能性有很强的影响。结果表明,越冬期和繁殖期均有越冬期和越冬期个体的长距离迁徙,两个主要释放/标记地点的时间分布规律明显:西南方向的个体主要在4月进行越冬,东南方向的个体主要在10月进行越冬。鸟类在个体尺度上表现出异质性(日累计移动距离为0.1 ~ 447 km/d)。在北非,大理石纹鸭比在西班牙观察到的每天迁移的时间要长得多。这些发现揭示了这个游牧物种迁徙策略的复杂性和灵活性,并表明长距离迁徙是个体对环境条件和湿地可用性的反应。此外,我们还讨论了观察到的野生和人工繁殖个体之间长距离运动差异的可能解释。这些关于季节模式和长距离迁徙中与起源相关的差异的见解对于为这种濒危物种提供更有效的保护策略至关重要。
{"title":"Wetland location and captive breeding influence trans-Mediterranean movements in the endangered Marbled Duck (Marmaronetta angustirostris)","authors":"Irene Pacheco-Guardiola,&nbsp;Juan Manuel Pérez-García,&nbsp;Óscar Aldeguer,&nbsp;Marcos Ferrández,&nbsp;Claudine de le Court,&nbsp;Juan Antonio Gómez,&nbsp;Francisco Botella","doi":"10.1111/ibi.13442","DOIUrl":"https://doi.org/10.1111/ibi.13442","url":null,"abstract":"<p>Waterbirds distributed in semi-arid and arid regions seem to have adapted their behaviour to the availability and seasonality of wetlands, increasing their mobility range. The Marbled Duck <i>Marmaronetta angustirostris</i> is a threatened waterbird that shows trans-Mediterranean movements but these are poorly known. In a conservation effort, there are two captive-breeding programmes in Spain. Each year captive-bred individuals are released in two main sites: Doñana and surroundings (southwest Spain) and the southern wetlands of Alicante (southeast Spain). In 2018, a GPS/GSM tagging project was launched to monitor the species to facilitate an understanding of their movement patterns and to assess the effects of captive breeding on the adaptation of individuals to the wild. This study presents the first description of long-distance movements between North Africa and Europe by Marbled Ducks. Of the 144 GPS-tagged individuals, only 18 crossed into Africa, the majority were wild-born (<i>n</i> = 14) and only four were from the captive breeding programme, indicating a strong effect of origin on the likelihood of undertaking long-distance movements. Our results showed that long-distance movements were not restricted to the wintering season but also occurred during the breeding season, showing a clear temporal pattern between the two main release/tagging sites: individuals from the southwest crossed mainly in April, whereas those from the southeast did so mainly in October. Birds showed heterogeneous movements at the individual scale (cumulative daily distance moved ranged from 0.1 to 447 km/day). Marbled Ducks performed significantly longer daily displacements during their time in North Africa than those observed in Spain. These findings reveal the complexity and flexibility of movement strategies in this nomadic species and suggest that long-distance movements are individual responses to environmental conditions and wetland availability. Furthermore, we discuss possible explanations for the observed differences in long-distance movements between wild-born and captive-bred individuals. These insights into the seasonal patterns and origin-related differences in long-distance movements are crucial for informing more effective conservation strategies for this endangered species.</p>","PeriodicalId":13254,"journal":{"name":"Ibis","volume":"168 1","pages":"245-258"},"PeriodicalIF":2.1,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ibi.13442","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145719387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Ibis
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1