TEMPORAL REDUNDANCY REDUCTION IN WAVELET BASED VIDEO COMPRESSION FOR HIGH DEFINITION VIDEOS

S. Sowmyayani, P. Rani
{"title":"TEMPORAL REDUNDANCY REDUCTION IN WAVELET BASED VIDEO COMPRESSION FOR HIGH DEFINITION VIDEOS","authors":"S. Sowmyayani, P. Rani","doi":"10.21917/ijivp.2018.0263","DOIUrl":null,"url":null,"abstract":"Data Storage and Communication plays a significant role in every human. Digital images and videos are stored in mobile and other storage devices. More specifically, video data requires huge amount of storage space for which the storage devices are more expensive. Hence there is a necessity of reducing the storage space of the data. Video compression is more common in all researches. In this work, the role of wavelets in video compression is studied. The temporal redundant data are converted to spatial data which are then transformed to wavelet coefficients. The low frequency components are removed from these wavelet coefficients. The proposed method is tested with some video sequences. The performance of the proposed method is analyzed by comparing it with the existing recent methods and with the state-of-art H.265 video coding standard. The experimental results substantially proved that the proposed method achieves 3.8dB higher PSNR than H.265 and 1.6dB higher PSNR than recent wavelet based video codecs.","PeriodicalId":30615,"journal":{"name":"ICTACT Journal on Image and Video Processing","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICTACT Journal on Image and Video Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21917/ijivp.2018.0263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Data Storage and Communication plays a significant role in every human. Digital images and videos are stored in mobile and other storage devices. More specifically, video data requires huge amount of storage space for which the storage devices are more expensive. Hence there is a necessity of reducing the storage space of the data. Video compression is more common in all researches. In this work, the role of wavelets in video compression is studied. The temporal redundant data are converted to spatial data which are then transformed to wavelet coefficients. The low frequency components are removed from these wavelet coefficients. The proposed method is tested with some video sequences. The performance of the proposed method is analyzed by comparing it with the existing recent methods and with the state-of-art H.265 video coding standard. The experimental results substantially proved that the proposed method achieves 3.8dB higher PSNR than H.265 and 1.6dB higher PSNR than recent wavelet based video codecs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于小波的高清晰度视频压缩中时间冗余度的降低
数据存储和通信在每个人身上都扮演着重要的角色。数字图像和视频存储在移动设备和其他存储设备中。更具体地说,视频数据需要大量的存储空间,而存储设备则更加昂贵。因此,有必要减少数据的存储空间。视频压缩在所有的研究中都是比较常见的。本文主要研究了小波在视频压缩中的作用。将时间冗余数据转换为空间数据,再将空间数据转换为小波系数。从这些小波系数中去除低频分量。用一些视频序列对该方法进行了验证。通过与现有的视频编码方法以及目前最先进的H.265视频编码标准进行比较,分析了该方法的性能。实验结果表明,该方法比H.265高3.8dB,比目前基于小波变换的视频编解码器高1.6dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
8 weeks
期刊最新文献
DIMENSIONALITY REDUCTION BASED CLASSIFICATION USING GENERATIVE ADVERSARIAL NETWORKS DATASET GENERATION ADVANCED COLOR COVERT IMAGE SHARING USING ARNOLD CAT MAP AND VISUAL CRYPTOGRAPHY STREETLIGHT OBJECTS RECOGNITION BY REGION AND HISTOGRAM FEATURES IN AN AUTONOMOUS VEHICLE SYSTEM SMART GESTURE USING REAL TIME OBJECT TRACKING CLASSIFICATION OF BRAIN TUMOR USING BEES SWARM OPTIMISATION
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1