{"title":"Technological Options for Direct Air Capture: A Comparative Process Engineering Review.","authors":"Xiaowei Wu, R. Krishnamoorti, Praveen Bollini","doi":"10.1146/annurev-chembioeng-102121-065047","DOIUrl":null,"url":null,"abstract":"The direct capture of CO2 from ambient air presents a means of decelerating the growth of global atmospheric CO2 concentrations. Considerations relating to process engineering are the focus of this review and have received significantly less attention than those relating to the design of materials for direct air capture (DAC). We summarize minimum thermodynamic energy requirements, second law efficiencies, major unit operations and associated energy requirements, capital and operating expenses, and potential alternative process designs. We also highlight process designs applied toward more concentrated sources of CO2 that, if extended to lower concentrations, could help move DAC units closer to more economical continuous operation. Addressing shortcomings highlighted here could aid in the design of improved DAC processes that overcome trade-offs between capture performance and DAC cost. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering, Volume 13 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":null,"pages":null},"PeriodicalIF":7.6000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of chemical and biomolecular engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1146/annurev-chembioeng-102121-065047","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 14
Abstract
The direct capture of CO2 from ambient air presents a means of decelerating the growth of global atmospheric CO2 concentrations. Considerations relating to process engineering are the focus of this review and have received significantly less attention than those relating to the design of materials for direct air capture (DAC). We summarize minimum thermodynamic energy requirements, second law efficiencies, major unit operations and associated energy requirements, capital and operating expenses, and potential alternative process designs. We also highlight process designs applied toward more concentrated sources of CO2 that, if extended to lower concentrations, could help move DAC units closer to more economical continuous operation. Addressing shortcomings highlighted here could aid in the design of improved DAC processes that overcome trade-offs between capture performance and DAC cost. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering, Volume 13 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
期刊介绍:
The Annual Review of Chemical and Biomolecular Engineering aims to provide a perspective on the broad field of chemical (and related) engineering. The journal draws from disciplines as diverse as biology, physics, and engineering, with development of chemical products and processes as the unifying theme.