{"title":"Free vibration behaviour and some mechanical properties of micro particle reinforced epoxy composites","authors":"Meltem Ürer, Aydin Demir","doi":"10.1515/ipp-2023-4379","DOIUrl":null,"url":null,"abstract":"Abstract The epoxy composite specimens of certain sizes were produced by adding graphite, silicon carbide and boron carbide microparticles separately at the rates of 5, 10 and 15 wt% to the epoxy resin. Free vibrations of these composite samples were investigated experimentally in a simple supported vibration test setup. Frequency spectrums were obtained by modal analysis method in this experimental setup. The damping ratios were calculated using the half power bandwidth method. The mechanical properties of these composite specimens were also determined by applying the tensile test. By controlling the obtained vibration values theoretically, the effects of microparticle contributions to these specimens at certain rates on natural frequency and damping properties were investigated in detail. The maximum reduction in natural frequency was observed at 5 wt% of each reinforcement. Only the first natural frequency of the 15 wt% boron carbide reinforced epoxy composite was slightly increased. The damping ratio was increased at 10 wt% graphite added and 5 wt% boron carbide added epoxy composites compared to pure epoxy, but decreased in other composite specimens.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ipp-2023-4379","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The epoxy composite specimens of certain sizes were produced by adding graphite, silicon carbide and boron carbide microparticles separately at the rates of 5, 10 and 15 wt% to the epoxy resin. Free vibrations of these composite samples were investigated experimentally in a simple supported vibration test setup. Frequency spectrums were obtained by modal analysis method in this experimental setup. The damping ratios were calculated using the half power bandwidth method. The mechanical properties of these composite specimens were also determined by applying the tensile test. By controlling the obtained vibration values theoretically, the effects of microparticle contributions to these specimens at certain rates on natural frequency and damping properties were investigated in detail. The maximum reduction in natural frequency was observed at 5 wt% of each reinforcement. Only the first natural frequency of the 15 wt% boron carbide reinforced epoxy composite was slightly increased. The damping ratio was increased at 10 wt% graphite added and 5 wt% boron carbide added epoxy composites compared to pure epoxy, but decreased in other composite specimens.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.