{"title":"Low-lying bound and resonance states in Λ61Ca and ΛΛ62Ca","authors":"","doi":"10.1142/s021830132350009x","DOIUrl":null,"url":null,"abstract":"In this paper, the energy, and wavefunctions of the low-lying bound and resonance states of [Formula: see text]Ca and [Formula: see text]Ca are studied. For [Formula: see text]Ca we adopted [Formula: see text]Ca two-body cluster model while for [Formula: see text]Ca we adopted [Formula: see text]Ca three-body cluster model. Two models of potentials, namely SH: Hulthén type and WS: Woods–Saxon type potentials, each having a spin-orbit coupling term is chosen for the [Formula: see text]-nucleus pair while three-range Gaussian (TRG) Nijmegen hardcore and softcore potential models are chosen for [Formula: see text] pair. The resulting few-body (two- and three-body) Schrödinger equations are solved numerically to get the bound state energies and wavefunctions. For the three-body calculation, we used hyperspherical coordinates. The formalism of supersymmetric quantum mechanics is applied to construct a one-parameter family of isospectral potential to investigate the resonance states of the [Formula: see text]Ca ([Formula: see text]Ca) core-[Formula: see text] two-body system. To study the effect of replacement of the outer core valence nucleon(s) of [Formula: see text]Ca by [Formula: see text] hyperon(s), two- and three-body cluster model calculations for the bound states of [Formula: see text]Ca and [Formula: see text]Ca are also carried out using the same set of two-body potentials, as used for [Formula: see text]Ca and [Formula: see text]Ca respectively. And a clear enhancement in the one- and two-[Formula: see text] separation energies and a shrinking of the overall size of the nucleus is indicated. The computed results are compared with some of those found in the literature.","PeriodicalId":50306,"journal":{"name":"International Journal of Modern Physics E","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Modern Physics E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s021830132350009x","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, the energy, and wavefunctions of the low-lying bound and resonance states of [Formula: see text]Ca and [Formula: see text]Ca are studied. For [Formula: see text]Ca we adopted [Formula: see text]Ca two-body cluster model while for [Formula: see text]Ca we adopted [Formula: see text]Ca three-body cluster model. Two models of potentials, namely SH: Hulthén type and WS: Woods–Saxon type potentials, each having a spin-orbit coupling term is chosen for the [Formula: see text]-nucleus pair while three-range Gaussian (TRG) Nijmegen hardcore and softcore potential models are chosen for [Formula: see text] pair. The resulting few-body (two- and three-body) Schrödinger equations are solved numerically to get the bound state energies and wavefunctions. For the three-body calculation, we used hyperspherical coordinates. The formalism of supersymmetric quantum mechanics is applied to construct a one-parameter family of isospectral potential to investigate the resonance states of the [Formula: see text]Ca ([Formula: see text]Ca) core-[Formula: see text] two-body system. To study the effect of replacement of the outer core valence nucleon(s) of [Formula: see text]Ca by [Formula: see text] hyperon(s), two- and three-body cluster model calculations for the bound states of [Formula: see text]Ca and [Formula: see text]Ca are also carried out using the same set of two-body potentials, as used for [Formula: see text]Ca and [Formula: see text]Ca respectively. And a clear enhancement in the one- and two-[Formula: see text] separation energies and a shrinking of the overall size of the nucleus is indicated. The computed results are compared with some of those found in the literature.
期刊介绍:
This journal covers the topics on experimental and theoretical nuclear physics, and its applications and interface with astrophysics and particle physics. The journal publishes research articles as well as review articles on topics of current interest.