Testing Spatial Dependence in Spatial Models with Endogenous Weights Matrices

Q3 Mathematics Journal of Econometric Methods Pub Date : 2018-07-31 DOI:10.2139/ssrn.3167555
Anil K. Bera, Osman Doğan, Suleyman Taspinar
{"title":"Testing Spatial Dependence in Spatial Models with Endogenous Weights Matrices","authors":"Anil K. Bera, Osman Doğan, Suleyman Taspinar","doi":"10.2139/ssrn.3167555","DOIUrl":null,"url":null,"abstract":"Abstract In this study, we propose simple test statistics for identifying the source of spatial dependence in spatial autoregressive models with endogenous weights matrices. Elements of the weights matrices are modelled in such a way that endogenity arises when the unobserved factors that affect elements of the weights matrices are correlated with the unobserved factors in the outcome equation. The proposed test statistics are robust to the presence of endogeneity in the weights and can be used to detect spatial dependence in the dependent variable and/or the disturbance terms. The robust test statistics are easy to calculate as computationally simple estimations are needed for their calculations. Our Monte Carlo results indicate that these tests have good size and power properties in finite samples. We also provide an empirical illustration to demonstrate the usefulness of the robust tests in identifying the source of spatial dependence.","PeriodicalId":36727,"journal":{"name":"Journal of Econometric Methods","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2139/ssrn.3167555","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometric Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3167555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 6

Abstract

Abstract In this study, we propose simple test statistics for identifying the source of spatial dependence in spatial autoregressive models with endogenous weights matrices. Elements of the weights matrices are modelled in such a way that endogenity arises when the unobserved factors that affect elements of the weights matrices are correlated with the unobserved factors in the outcome equation. The proposed test statistics are robust to the presence of endogeneity in the weights and can be used to detect spatial dependence in the dependent variable and/or the disturbance terms. The robust test statistics are easy to calculate as computationally simple estimations are needed for their calculations. Our Monte Carlo results indicate that these tests have good size and power properties in finite samples. We also provide an empirical illustration to demonstrate the usefulness of the robust tests in identifying the source of spatial dependence.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用内生权矩阵检验空间模型的空间依赖性
摘要在本研究中,我们提出了一个简单的检验统计量来识别具有内源性权重矩阵的空间自回归模型的空间依赖来源。权重矩阵的元素以这样一种方式建模,即当影响权重矩阵元素的未观察到的因素与结果方程中的未观察到的因素相关时,就会产生内生性。所提出的检验统计量对权重内生性的存在具有鲁棒性,可用于检测因变量和/或干扰项的空间依赖性。鲁棒性检验统计量的计算容易,因为它们的计算只需要简单的估计。我们的蒙特卡罗结果表明,这些测试在有限的样本中具有良好的尺寸和功率性能。我们还提供了一个实证说明,以证明鲁棒测试在识别空间依赖的来源有用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Econometric Methods
Journal of Econometric Methods Economics, Econometrics and Finance-Economics and Econometrics
CiteScore
2.20
自引率
0.00%
发文量
7
期刊最新文献
Estimation of Causal Effects with a Binary Treatment Variable: A Unified M-Estimation Framework Introduction to Latent Variable Estimation for Undergraduate Econometrics: An Application with Disney Theme Park Ride Wait Times Does Health Behavior Change After Diagnosis? Evidence From Fuzzy Regression Discontinuity Matching on Noise: Finite Sample Bias in the Synthetic Control Estimator Nonparametric Instrumental Regression with Two-Way Fixed Effects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1